Skip to main content
Log in

Covalent Immobilization and Characterization of a Novel Pullulanase from Fontibacillus sp. Strain DSHK 107 onto Florisil® and Nano-silica for Pullulan Hydrolysis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A novel pullulanase partially purified from Fontibacillus sp. was covalently immobilized on Florisil® and nano-silica through both glutaraldehyde and (3-glycidyloxypropyl)trimethoxysilane spacer arms. The pullulanase immobilized on Florisil® and nano-silica through glutaraldehyde spacer arm showed 85 and 190 % activity of its free form, respectively, whereas no activity was observed when it was immobilized on the same supports through (3-glycidyloxypropyl)trimethoxysilane spacer arm. The maximum working pHs of both the immobilized pullulanases on Florisil® and nano-silica through glutaraldehyde spacer arm were determined as 5.0; however, the maximum working pH of the free pullulanase was pH 6.0. The maximum temperatures of all the pullulanase preparations were determined as 35 °C. The apparent K m values were 1.49, 1.54, and 0.59 mg/mL pullunan, respectively, for the free and immobilized pullulanases on Florisil® and nano-silica. The corresponding apparent V max values were 0.59, 1.53, and 1.57 U mg prot.−1 min.−1. Thermal stability of pullulanases immobilized on Florisil® and nano-silica was enhanced 6.5- and 15.6-folds, respectively at 35 °C and 6.6- and 16.0-folds, respectively, at 50 °C. The pullulanases immobilized on Florisil® and nano-silica protected 71 and 90 % of their initial activities after 10 reuses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Leathers, T. D. (2003). Biotechnological production and applications of pullulan. Applied Microbiology and Biotechnology, 62(5), 468–473.

    Article  CAS  Google Scholar 

  2. Domań-Pytka, M., & Bardowski, J. (2004). Pullulan degrading enzymes of bacterial origin. Critical Reviews in Microbiology, 30(2), 107–121.

    Article  Google Scholar 

  3. Israilides, C., Smith, A., Scanlon, B., & Barnett, C. (1999). Pullulan from agro-industrial wastes. Biotechnology and Genetic Engineering Reviews, 16(1), 309–324.

    Article  CAS  Google Scholar 

  4. Kuroiwa, T., Shoda, H., Ichikawa, S., Sato, S., & Mukataka, S. (2005). Immobilization and stabilization of pullulanase from Klebsiella pneumoniae by a multipoint attachment method using activated agar gel supports. Process Biochemistry, 40(8), 2637–2642.

    Article  CAS  Google Scholar 

  5. Singh, R. S., Saini, G. K., & Kennedy, J. F. (2010). Maltotriose syrup preparation from pullulan using pullulanase. Carbohydrate Polymers, 80(2), 401–407.

    Article  CAS  Google Scholar 

  6. Atia, K. S., Ismail, S. A., El-Arnaouty, M. B., & Dessouki, A. M. (2003). Use of co-immobilized beta-amylase and pullulanase in reduction of saccharification time of starch and increase in maltose yield. Biotechnology Progress, 19(3), 853–857.

    Article  CAS  Google Scholar 

  7. Talekar, S., Pandharbale, A., Ladole, M., Nadar, S., Mulla, M., Japhalekar, K., Pattankude, K., & Arage, D. (2013). Carrier free co-immobilization of alpha amylase, glucoamylase and pullulanase as combined cross-linked enzyme aggregates (combi-CLEAs): a tri-enzyme biocatalyst with one pot starch hydrolytic activity. Bioresource Technology, 147, 269–275.

    Article  CAS  Google Scholar 

  8. Roy, I., & Gupta, M. N. (2004). Hydrolysis of starch by a mixture of glucoamylase and pullulanase entrapped individually in calcium alginate beads. Enzyme and Microbial Technology, 34(1), 26–32.

    Article  CAS  Google Scholar 

  9. Hii, S. L., Tan, J. S., Ling, T. C., & Ariff, A. B. (2012). Pullulanase: role in starch hydrolysis and potential industrial applications. Journal of Enzyme Research, 2012, 1–14.

    Article  Google Scholar 

  10. Sheldon, R. A. (2007). Enzyme immobilization: the quest for optimum performance. Advanced Synthesis & Catalysis, 349(8-9), 1289–1307.

    Article  CAS  Google Scholar 

  11. DiCosimo, R., McAuliffe, J., Poulose, A. J., & Bohlmann, G. (2013). Industrial use of immobilized enzymes. Chemical Society Reviews, 42(15), 6437–6474.

    Article  CAS  Google Scholar 

  12. Dessouki, A. M., Issa, G. I., & Atia, K. S. (2001). Pullulanase immobilization on natural and synthetic polymers. Journal of Chemical Technology & Biotechnology, 76(7), 700–706.

    Article  CAS  Google Scholar 

  13. Zhang, L., Zhu, X., Zheng, S., & Sun, H. (2009). Photochemical preparation of magnetic chitosan beads for immobilization of pullulanase. Biochemical Engineering Journal, 46(1), 83–87.

    Article  CAS  Google Scholar 

  14. Singh, R. S., Saini, G. K., & Kennedy, J. F. (2010). Covalent immobilization and thermodynamic characterization of pullulanase for the hydrolysis of pullulan in batch system. Carbohydrate Polymers, 81(2), 252–259.

    Article  CAS  Google Scholar 

  15. Long, J., Jiao, A., Wei, B., Wu, Z., Zhang, Y., Xu, X., & Jin, Z. (2014). A novel method for pullulanase immobilized onto magnetic chitosan/Fe3O4 composite nanoparticles by in situ preparation and evaluation of the enzyme stability. Journal of Molecular Catalysis B: Enzymatic, 109, 53–61.

    Article  CAS  Google Scholar 

  16. Ali, G., Dulong, V., Gasmi, S. N., Rihouey, C., Picton, L., & Le Cerf, D. (2015). Covalent immobilization of pullulanase on alginate and study of its hydrolysis of pullulan. Biotechnology Progress, 31(4), 883–889.

    Article  CAS  Google Scholar 

  17. Cao, L. (2006), In carrier-bound immobilized enzymes, Cao, L., (ed), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp. 169–316.

  18. dos Santos, J. C. S., Barbosa, O., Ortiz, C., Berenguer-Murcia, A., Rodrigues, R. C., & Fernandez-Lafuente, R. (2015). Importance of the support properties for immobilization or purification of enzymes. CHEMCATCHEM, 7(16), 2413–2432.

    Article  Google Scholar 

  19. Barbosa, O., Ortiz, C., Berenguer-Murcia, A., Torres, R., Rodrigues, R. C., & Fernandez-Lafuente, R. (2014). Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Advances, 4, 1583–1600.

    Article  CAS  Google Scholar 

  20. Hwang, S., Lee, K.-T., Park, J.-W., Min, B.-R., Haam, S., Ahn, I.-S., & Jung, J.-K. (2004). Stability analysis of Bacillus stearothermophilus L1 lipase immobilized on surface-modified silica gels. Biochemical Engineering Journal, 17(2), 85–90.

    Article  CAS  Google Scholar 

  21. Tukel, S. S., & Alptekin, O. (2004). Immobilization and kinetics of catalase onto magnesium silicate. Process Biochemistry, 39(12), 2149–2155.

    Article  CAS  Google Scholar 

  22. Alptekin, Ö., Tükel, S. S., Yıldırım, D., & Alagöz, D. (2009). Characterization and properties of catalase immobilized onto controlled pore glass and its application in batch and plug-flow type reactors. Journal of Molecular Catalysis B: Enzymatic, 58(1-4), 124–131.

    Article  CAS  Google Scholar 

  23. Mateo, C., Grazu, V., Pessela, B. C., Montes, T., Palomo, J. M., Torres, R., Lopez-Gallego, F., Fernandez-Lafuente, R., & Guisan, J. M. (2007). Advances in the design of new epoxy supports for enzyme immobilization-stabilization. Biochemical Society Transactions, 35(6), 1593–1601.

    Article  CAS  Google Scholar 

  24. Barbosa, O., Torres, R., Ortiz, C., Berenguer-Murcia, Á., Rodrigues, R. C., & Fernandez-Lafuente, R. (2013). Heterofunctional supports in enzyme immobilization: from traditional immobilization protocols to opportunities in tuning enzyme properties. Biomacromolecules, 14(8), 2433–2462.

    Article  CAS  Google Scholar 

  25. Ansari, S. A., & Husain, Q. (2012). Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnology Advances, 30(3), 512–523.

    Article  CAS  Google Scholar 

  26. Talekar, S., Ghodake, V., Ghotage, T., Rathod, P., Deshmukh, P., Nada, R. S., Mulla, M., & Ladole, M. (2012). Novel magnetic cross-linked enzyme aggregates (magnetic CLEAs) of alpha amylase. Bioresource Technology, 123, 542–547.

    Article  CAS  Google Scholar 

  27. Lei, C., Shin, Y., Liu, J., & Ackerman, E. J. (2002). Entrapping enzyme in a functionalized nanoporous support. Journal of the American Chemical Society, 124, 11242–11243.

    Article  CAS  Google Scholar 

  28. Mitchell, D. T., Lee, S. B., Trofin, L., Li, N., Nevanen, T. K., Söderlund, H., & Martin, C. R. (2002). Smart nanotubes for bioseparations and biocatalysis. Journal of the American Chemical Society, 124(38), 11864–11865.

    Article  CAS  Google Scholar 

  29. Wang, P. (2006). Nanoscale biocatalyst systems. Current Opinion in Biotechnology, 17(6), 574–579.

    Article  CAS  Google Scholar 

  30. Sundberg, L., & Porath, J. (1974). Preparation of adsorbents for biospecific affinity chromatography: I. Attachment of group-containing ligands to insoluble polymers by means of bifunctional oxiranes. Journal of Chromatography. A, 90(1), 87–98.

    Article  CAS  Google Scholar 

  31. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  32. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428.

    Article  CAS  Google Scholar 

  33. Talekar, S., Nadar, S., Joshi, A., & Joshi, G. (2014). Pectin cross-linked enzyme aggregates (pectin-CLEAs) of glucoamylase. RSC Advances, 4, 59444–59453.

    Article  CAS  Google Scholar 

  34. Nadar, S. S., Muley, A. B., Ladole, M. R., & Joshi, P. U. (2016). Macromolecular cross-linked enzyme aggregates (M-CLEAs) of alpha-amylase. International Journal of Biological Macromolecules, 84, 69–78.

    Article  CAS  Google Scholar 

  35. Nadar, S. S., & Rathod, V. K. (2016). Magnetic macromolecular cross linked enzyme aggregates (CLEAs) of glucoamylase. Enzyme and Microbial Technology, 83, 78–87.

    Article  CAS  Google Scholar 

  36. Alptekin, O., Tukel, S. S., Yildirim, D., & Alagoz, D. (2011). Covalent immobilization of catalase onto spacer-arm attached modified florisil: characterization and application to batch and plug-flow type reactor systems. Enzyme and Microbial Technology, 49, 547–554.

    Article  CAS  Google Scholar 

  37. Yildirim, D., Tukel, S. S., Alagoz, D., & Alptekin, O. (2011). Preparative-scale kinetic resolution of racemic styrene oxide by immobilized epoxide hydrolase. Enzyme and Microbial Technology, 49(6-7), 555–559.

    Article  CAS  Google Scholar 

  38. Long, J., Wu, Z., Li, X., Xu, E., Xu, X., Jin, Z., & Jiao, A. (2015). New method for the immobilization of pullulanase onto hybrid magnetic (Fe3O4-kappa-carrageenan) nanoparticles by electrostatic coupling with pullulanase/chitosan complex. Journal of Agricultural and Food Chemistry., 63(13), 3534–3542.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilek Alagöz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alagöz, D., Yildirim, D., Güvenmez, H.K. et al. Covalent Immobilization and Characterization of a Novel Pullulanase from Fontibacillus sp. Strain DSHK 107 onto Florisil® and Nano-silica for Pullulan Hydrolysis. Appl Biochem Biotechnol 179, 1262–1274 (2016). https://doi.org/10.1007/s12010-016-2063-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2063-2

Keywords

Navigation