Skip to main content
Log in

Sol–gel encapsulation of pullulanase in the presence of hybrid magnetic (Fe3O4–chitosan) nanoparticles improves thermal and operational stability

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Pullulanase was sol–gel encapsulated in the presence of magnetic chitosan/Fe3O4 nanoparticles. The resulting immobilized pullulanase was characterized by scanning electron microscopy, vibrating sample magnetometry, Fourier transform infrared spectroscopy and thermogravimetric analysis. The results showed that the addition of pullulanase created a more regular surface on the sol–gel matrix and an enhanced magnetic response to an applied magnetic field. The maximal activity retention (83.9%) and specific activity (291.7 U/mg) of the immobilized pullulanase were observed under optimized conditions including an octyltriethoxysilane:tetraethoxysilane (OTES:TEOS) ratio of 1:2 and enzyme concentration of 0.484 mg/mL sol. The immobilized enzyme exhibited good thermal stability. When the temperature was above 60 °C, the immobilized pullulanase showed significantly higher activity than the free enzyme (p < 0.01); enzyme immobilized by simple sol–gel encapsulation and co-immobilized by crosslinking-encapsulation retained 52 and 69% of their initial activity after 5 h at 62 °C, respectively, compared to 11% for the free enzyme. Moreover, the stability of the pullulanase was improved by crosslinking-encapsulation, as the enzyme retained more than 85 and 81% of its original activity after 5 and 6 consecutive reuses, respectively, compared to 80 and 72% of its original activity for simple sol–gel encapsulated enzymes. This indicated the leakage of enzyme molecules through the pores of the gel was substantially abated by cross-linking. Such immobilized pullulanase provides high stability and ease of enzyme recovery, characteristics that are advantageous for applications in the food industry that involve continuous starch processing.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Buchholz K, Seibel J (2008) Carbohydr Res 343:1966–1979

    Article  CAS  Google Scholar 

  2. Singh RS, Saini GK, Kennedy JF (2010) Carbohydr Polym 81:252–259

    Article  CAS  Google Scholar 

  3. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Enzyme Microb Technol 40:1451–1463

    Article  CAS  Google Scholar 

  4. Dessouki A M, Issa G I, Atia K S (2001) J Chem Technol Biotechnol 76:700–706

    Article  CAS  Google Scholar 

  5. Kuroiwa T, Shoda H, Ichikawa S, Sato S, Mukataka S (2005) Process Biochem 40:2637–2642

    Article  CAS  Google Scholar 

  6. Gupta AK, Gupta M (2005) Biomaterials 26:3995–4021

    Article  CAS  Google Scholar 

  7. Ito A, Shinkai M, Honda H, Kobayashi T (2005) J Biosci Bioeng 100:1–11

    Article  CAS  Google Scholar 

  8. Pilapong C, Sitthichai S, Thongtem S, Thongtem T (2014) Int J Pharm 473:469–474

    Article  CAS  Google Scholar 

  9. Wang S, Tang J, Zhao H, Wan J, Chen K (2014) J Colloid Interface Sci 432:3–46

    Google Scholar 

  10. Matsuno R, Yamamoto K, Otsuka H, Takahara A (2004) Macromolecules 37:2203–2209

    Article  CAS  Google Scholar 

  11. Zhao G, Wang J, Li Y, Chen X, Liu Y (2011) J Phys Chem C 115:6350–6359

    Article  CAS  Google Scholar 

  12. Franzreb M, Siemann-Herzberg M, Hobley TJ, Thomas ORT (2006) Appl Microbiol Biotechnol 70:505–516

    Article  CAS  Google Scholar 

  13. Pan C, Hu B, Li W, Sun Y, Ye H, Zeng X (2009) J Mol Catal B Enzym 61:208–215

    Article  CAS  Google Scholar 

  14. Zang L, Qiu J, Wu X, Zhang W, Sakai E, Wei Y (2014) Ind Eng Chem Res 53:3448–3454

    Article  CAS  Google Scholar 

  15. Avnir D, Coradin T, Lev O, Livage J (2006) J Mater Chem 16:1013–1030

    Article  CAS  Google Scholar 

  16. Kauffmann C, Mandelbaum RT (1998) J Biotechnol 62:169–176

    Article  CAS  Google Scholar 

  17. Sahin O, Erdemir S, Uyanik A, Yilmaz M (2009) Appl Catal A 369:36–41

    Article  CAS  Google Scholar 

  18. Zubiolo C, Santos RC, Carvalho NB, Soares CM, Lima AS, de Aquino Santana LC (2014) Bioprocess Biosyst Eng 37:1781–1788

    CAS  Google Scholar 

  19. Smith K, Silvernail NJ, Rodgers KR, Elgren TE, Castro M, Parker RM (2002) J Am Chem Soc 124:4247–4252

    Article  CAS  Google Scholar 

  20. Wang GH, Zhang LM (2014) J Sol Gel Sci Technol 72:85–91

    Article  CAS  Google Scholar 

  21. Chevalier Y (2002) Curr Opin Colloid Interface Sci 7:3–11

    Article  CAS  Google Scholar 

  22. Coradin T, Lopez P J (2003) ChemBio Chem 4:251–259

    Article  CAS  Google Scholar 

  23. Reetz MT, Tielmann P, Wiesenhöfer W, Könen W, Zonta A (2003) Adv Synth Catal 345:717–728

    Article  CAS  Google Scholar 

  24. Long J, Jiao A, Wei B, Wu Z, Zhang Y, Xu X, Jin Z (2014) J Mol Catal B Enzym 109:53–61

    Article  CAS  Google Scholar 

  25. Long J, Li X, Wu Z, Xu E, Xu X, Jin Z, Jiao A (2015) Colloids Surf Physicochem Eng Aspects 472: 69–77

    Article  CAS  Google Scholar 

  26. Franzreb M, Siemann-Herzberg M, Hobley TJ, Thomas OR (2006) Appl Microbiol Biotechnol 70:505–516

    Article  CAS  Google Scholar 

  27. Yagonia CFJ, Park K, Yoo YJ (2014) J Sol Gel Sci Technol 69:564–570

    Article  CAS  Google Scholar 

  28. Tomin A, Weiser D, Hellner G, Bata Z, Corici L, Péter F, Koczka B, Poppe L (2011) Process Biochem 46:52–58

    Article  CAS  Google Scholar 

  29. Chen JP, Yang PC, Ma YH, Wu T (2011) Carbohydr Polym 84:364–372

    Article  CAS  Google Scholar 

  30. Wang J, Zhao G, Li Y, Liu X, Hou P (2013) Appl Microbiol Biotechnol 97:681–692

    Article  CAS  Google Scholar 

  31. Zubiolo C, Santos RCA, Figueiredo RT, Soares CMF, de Aquino Santana LCL (2015) J Therm Anal Calorim 120:1503–1509

    Article  CAS  Google Scholar 

  32. Mukherjee I, Mylonakis A, Guo Y, Samuel SP, Li S, Wei RY, Kojtari A, Wei Y (2009) Microporous Mesoporous Mater 122:168–174

    Article  CAS  Google Scholar 

  33. Todan L, Andronescu C, Vuluga DM, Culita DC, Zaharescu M (2013) J Therm Anal Calorim 114:91–99

    Article  CAS  Google Scholar 

  34. Rao AV, Kalesh RR (2003) Sci Technol Adv Mat 4:509–515

    Article  CAS  Google Scholar 

  35. Soares CMF, Santos O, Castro H, Moraes F, Zanin G (2004) Appl Biochem Biotechnol 113:307–319

    Article  Google Scholar 

  36. Fidalgo A, Ciriminna R, Ilharco LM, Pagliaro M (2005) Chem Mater 17:6686–6694

    Article  CAS  Google Scholar 

  37. Chen JP, Lin WS (2003) Enzyme Microb Technol 32:801–811

    Article  CAS  Google Scholar 

  38. Dosoretz C, Armon R, Starosvetzky J, Rothschild N (1996) J Sol Gel Sci Technol 7:7–11

    Article  CAS  Google Scholar 

  39. Zhang S, Gao S, Gao G (2010) Appl Biochem Biotechnol 160:1386–1381

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 31601413), the Nature Science Foundation of Jiangsu Province (No. BK20160168) and the Postdoctoral Research Funding Plan of Jiangsu Province (No. 1601145C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengyu Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, J., Li, X., Zhan, X. et al. Sol–gel encapsulation of pullulanase in the presence of hybrid magnetic (Fe3O4–chitosan) nanoparticles improves thermal and operational stability. Bioprocess Biosyst Eng 40, 821–831 (2017). https://doi.org/10.1007/s00449-017-1747-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-017-1747-5

Keywords

Navigation