Skip to main content
Log in

Improved Performance of Lipase Immobilized on Tannic Acid-Templated Mesoporous Silica Nanoparticles

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Mesoporous silica nanoparticles were synthesized by using tannic acid as a pore-forming agent, which is an environmentally friendly, cheap, and non-surfactant template. SEM and TEM images indicated that the tannic acid-templated mesoporous silica nanoparticles (TA-MSNs) are monodisperse spherical-like particles with an average diameter of 195 ± 16 nm. The Brunauer–Emmett–Teller (BET) results showed that the TA-MSNs had a relatively high surface area (447 m2/g) and large pore volume (0.91 cm3/g), and the mean pore size was ca. 10.1 nm. Burkholderia cepacia lipase was immobilized on the TA-MSNs by physical adsorption for the first time, and the properties of immobilized lipase (BCL@TA-MSNs) were investigated. The BCL@TA-MSNs exhibited satisfactory thermal stability; strong tolerance to organic solvents such as methanol, ethanol, isooctane, n-hexane, and tetrahydrofuran; and high operational reusability when BCL@TA-MSNs were applied in esterification and transesterification reactions. After recycling 15 times in the transesterification reaction for biodiesel production, over 85 % of biodiesel yield can be maintained. With these desired characteristics, the TA-MSNs may provide excellent candidates for enzyme immobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yang, P., Gai, S., & Lin, J. (2012). Functionalized mesoporous silica materials for controlled drug delivery. Chemical Society Reviews, 41, 3679–3698.

    Article  CAS  Google Scholar 

  2. Perego, C., & Millini, R. (2013). Porous materials in catalysis: challenges for mesoporous materials. Chemical Society Reviews, 42, 3956–3976.

    Article  CAS  Google Scholar 

  3. Popat, A., Hartono, S. B., Stahr, F., Liu, J., Qiao, S. Z., & Qing Lu, G. (2011). Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers. Nanoscale, 3, 2801–2818.

    Article  CAS  Google Scholar 

  4. Tao, Z. (2014). Mesoporous silica-based nanodevices for biological applications. RSC Advances, 4, 18961–18980.

    Article  CAS  Google Scholar 

  5. Popat, A., Ross, B. P., Liu, J., Jambhrunkar, S., Kleitz, F., & Qiao, S. Z. (2012). Enzyme-responsive controlled release of covalently bound prodrug from functional mesoporous silica nanospheres. Angewandte Chemie International Edition, 51, 12486–12489.

    Article  CAS  Google Scholar 

  6. Hoffmann, F., Cornelius, M., Morell, J., & Fröba, M. (2006). Silica-based mesoporous organic–inorganic hybrid materials. Angewandte Chemie International Edition, 45, 3216–3251.

    Article  CAS  Google Scholar 

  7. Wan, Y., & Zhao, D. (2007). On the controllable soft-templating approach to mesoporous silicates. Chemical Reviews, 107, 2821–2860.

    Article  CAS  Google Scholar 

  8. Gao, Z., & Zharov, I. (2014). Large pore mesoporous silica nanoparticles by templating with a nonsurfactant molecule, tannic acid. Chemistry of Materials, 26, 2030–2037.

    Article  CAS  Google Scholar 

  9. Wei, Y., Jin, D., Ding, T., Shih, W. H., Liu, X., Cheng, S. Z., & Fu, Q. (1998). A non-surfactant templating route to mesoporous silica materials. Advanced Materials, 10, 313–316.

    Article  CAS  Google Scholar 

  10. Wu, S.-H., Mou, C.-Y., & Lin, H.-P. (2013). Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews, 42, 3862–3875.

    Article  CAS  Google Scholar 

  11. Yagüe, C., Moros, M., Grazu, V., Arruebo, M., & Santamaria, J. (2008). Synthesis and stealthing study of bare and PEGylated silica micro-and nanoparticles as potential drug-delivery vectors. Chemical Engineering Journal, 137, 45–53.

    Article  Google Scholar 

  12. Wei, Y., Xu, J., Dong, H., Dong, J. H., Qiu, K., & Jansen-Varnum, S. A. (1999). Preparation and physisorption characterization of D-glucose-templated mesoporous silica sol-gel materials. Chemistry of Materials, 11, 2023–2029.

    Article  CAS  Google Scholar 

  13. Yanagisawa, T., Shimizu, T., Kuroda, K., & Kato, C. (1990). The preparation of alkyltriinethylaininonium–kaneinite complexes and their conversion to microporous materials. Bulletin of the Chemical Society of Japan, 63, 988–992.

    Article  CAS  Google Scholar 

  14. Bau, L., Bartova, B., Arduini, M. and Mancin, F. (2009) Surfactant-free synthesis of mesoporous and hollow silica nanoparticles with an inorganic template. Chemical Communication. 7584–7586.

  15. Hasan, F., Shah, A. A., & Hameed, A. (2006). Industrial applications of microbial lipases. Enzyme and Microbial Technology, 39, 235–251.

    Article  CAS  Google Scholar 

  16. Mohammadi, M., Habibi, Z., Dezvarei, S., Yousefi, M., & Ashjari, M. (2015). Selective enrichment of polyunsaturated fatty acids by hydrolysis of fish oil using immobilized and stabilized Rhizomucor miehei lipase preparations. Food and Bioproducts Processing, 94, 414–421.

    Article  CAS  Google Scholar 

  17. Mohammadi, M., Habibi, Z., Dezvarei, S., Yousefi, M., Samadi, S., & Ashjari, M. (2014). Improvement of the stability and selectivity of Rhizomucor miehei lipase immobilized on silica nanoparticles: selective hydrolysis of fish oil using immobilized preparations. Process Biochemistry, 49, 1314–1323.

    Article  CAS  Google Scholar 

  18. Adlercreutz, P. (2013). Immobilisation and application of lipases in organic media. Chemical Society Reviews, 42, 6406–6436.

    Article  CAS  Google Scholar 

  19. Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 40, 1451–1463.

    Article  CAS  Google Scholar 

  20. Marciello, M., Filice, M., & Palomo, J. M. (2012). Different strategies to enhance the activity of lipase catalysts. Catalysis Science & Technology, 2, 1531–1543.

    Article  CAS  Google Scholar 

  21. Ansorge-Schumacher, M. B., & Thum, O. (2013). Immobilised lipases in the cosmetics industry. Chemical Society Reviews, 42, 6475–6490.

    Article  CAS  Google Scholar 

  22. Kapoor, M., & Gupta, M. N. (2012). Lipase promiscuity and its biochemical applications. Process Biochemistry, 47, 555–569.

    Article  CAS  Google Scholar 

  23. Pan, S., Liu, X., Xie, Y., Yi, Y., Li, C., Yan, Y., & Liu, Y. (2010). Esterification activity and conformation studies of Burkholderia cepacia lipase in conventional organic solvents, ionic liquids and their co-solvent mixture media. Bioresource Technology, 101, 9822–9824.

    Article  CAS  Google Scholar 

  24. Salum, T., Baron, A., Zago, E., Turra, V., Baratti, J., Mitchell, D., & Krieger, N. (2008). An efficient system for catalyzing ester synthesis using a lipase from a newly isolated Burkholderia cepacia strain. Biocatalysis and Biotransformation, 26, 197–203.

    Article  CAS  Google Scholar 

  25. Liu, T., Liu, Y., Wang, X., Li, Q., Wang, J., & Yan, Y. (2011). Improving catalytic performance of Burkholderia cepacia lipase immobilized on macroporous resin NKA. Journal of Molecular Catalysis B: Enzymatic, 71, 45–50.

    Article  CAS  Google Scholar 

  26. Mohammadi, M., Ashjari, M., Dezvarei, S., Yousefi, M., Babaki, M., & Mohammadi, J. (2015). Rapid and high-density covalent immobilization of Rhizomucor miehei lipase using a multi component reaction: application in biodiesel production. RSC Advances, 5, 32698–32705.

    Article  CAS  Google Scholar 

  27. Liu, J., Li, C., Yang, Q., Yang, J., & Li, C. (2007). Morphological and structural evolution of mesoporous silicas in a mild buffer solution and lysozyme adsorption. Langmuir, 23, 7255–7262.

    Article  CAS  Google Scholar 

  28. Hudson, S., Cooney, J., & Magner, E. (2008). Proteins in mesoporous silicates. Angewandte Chemie International Edition, 47, 8582–8594.

    Article  CAS  Google Scholar 

  29. Hartmann, M. (2005). Ordered mesoporous materials for bioadsorption and biocatalysis. Chemistry of Materials, 17, 4577–4593.

    Article  CAS  Google Scholar 

  30. Takahashi, H., Li, B., Sasaki, T., Miyazaki, C., Kajino, T., & Inagaki, S. (2000). Catalytic activity in organic solvents and stability of immobilized enzymes depend on the pore size and surface characteristics of mesoporous silica. Chemistry of Materials, 12, 3301–3305.

    Article  CAS  Google Scholar 

  31. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  32. Ejima, H., Richardson, J. J., Liang, K., Best, J. P., van Koeverden, M. P., Such, G. K., Cui, J., & Caruso, F. (2013). One-step assembly of coordination complexes for versatile film and particle engineering. Science, 341, 154–157.

    Article  CAS  Google Scholar 

  33. Wei, L., Gao, Z., Jing, Y., & Wang, Y. (2013). Adsorption of CO2 from simulated flue gas on pentaethylenehexamine-loaded mesoporous silica support adsorbent. Industrial & Engineering Chemistry Research, 52, 14965–14974.

    Article  CAS  Google Scholar 

  34. Bootz, A., Vogel, V., Schubert, D., & Kreuter, J. (2004). Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly(butyl cyanoacrylate) nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 57, 369–375.

    Article  CAS  Google Scholar 

  35. Yamada, H., Urata, C., Higashitamori, S., Aoyama, Y., Yamauchi, Y., & Kuroda, K. (2014). Critical roles of cationic surfactants in the preparation of colloidal mesostructured silica nanoparticles: control of mesostructure, particle size, and dispersion. ACS Applied Materials & Interfaces, 6, 3491–3500.

    Article  CAS  Google Scholar 

  36. Yamamoto, E., Kitahara, M., Tsumura, T., & Kuroda, K. (2014). Preparation of size-controlled monodisperse colloidal mesoporous silica nanoparticles and fabrication of colloidal crystals. Chemistry of Materials, 26, 2927–2933.

    Article  CAS  Google Scholar 

  37. Fu, W. H., Guan, Y., Wang, Y. M., & He, M.-Y. (2016). A facile synthesis of monodispersed mesoporous silica nanospheres with Pm3n structure. Microporous and Mesoporous Materials, 220, 168–174.

    Article  CAS  Google Scholar 

  38. Kruk, M., & Jaroniec, M. (2001). Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chemistry of Materials, 13, 3169–3183.

    Article  CAS  Google Scholar 

  39. Xia, L. Y., Zhang, M. Q., Yuan, C. e., & Rong, M. Z. (2011). A facile heteroaggregate-template route to hollow magnetic mesoporous spheres with tunable shell structures. Journal of Materials Chemistry, 21, 9020–9026.

    Article  CAS  Google Scholar 

  40. Li, Y., Zhou, G., Li, C., Qin, D., Qiao, W., & Chu, B. (2009). Adsorption and catalytic activity of porcine pancreatic lipase on rod-like SBA-15 mesoporous material. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 341, 79–85.

    Article  CAS  Google Scholar 

  41. Yang, J., Zhang, J., Zhu, L., Chen, S., Zhang, Y., Tang, Y., Zhu, Y., & Li, Y. (2006). Synthesis of nano titania particles embedded in mesoporous SBA-15: characterization and photocatalytic activity. Journal of Hazardous Materials, 137, 952–958.

    Article  CAS  Google Scholar 

  42. Zhao, H., Yu, N., Ding, Y., Tan, R., Liu, C., Yin, D., Qiu, H., & Yin, D. (2010). Task-specific basic ionic liquid immobilized on mesoporous silicas: efficient and reusable catalysts for Knoevenagel condensation in aqueous media. Microporous and Mesoporous Materials, 136, 10–17.

    Article  CAS  Google Scholar 

  43. Zhou, Z., Inayat, A., Schwieger, W., & Hartmann, M. (2012). Improved activity and stability of lipase immobilized in cage-like large pore mesoporous organosilicas. Microporous and Mesoporous Materials, 154, 133–141.

    Article  CAS  Google Scholar 

  44. Salis, A., Svensson, I., Monduzzi, M., Solinas, V., & Adlercreutz, P. (2003). The atypical lipase B from Candida antarctica is better adapted for organic media than the typical lipase from Thermomyces lanuginosa. Biochimica Biophys Acta (BBA) - Proteins Proteomics, 1646, 145–151.

    Article  CAS  Google Scholar 

  45. Gomes, F. M., Pereira, E. B., & de Castro, H. F. (2004). Immobilization of lipase on chitin and its use in nonconventional biocatalysis. Biomacromolecules, 5, 17–23.

    Article  CAS  Google Scholar 

  46. Chao, C., Liu, J., Wang, J., Zhang, Y., Zhang, B., Zhang, Y., Xiang, X., & Chen, R. (2013). Surface modification of halloysite nanotubes with dopamine for enzyme immobilization. ACS Applied Materials & Interfaces, 5, 10559–10564.

    Article  CAS  Google Scholar 

  47. Liu, Y., Zeng, Z., Zeng, G., Tang, L., Pang, Y., Li, Z., Liu, C., Lei, X., Wu, M., & Ren, P. (2012). Immobilization of laccase on magnetic bimodal mesoporous carbon and the application in the removal of phenolic compounds. Bioresource Technology, 115, 21–26.

    Article  CAS  Google Scholar 

  48. Altstein, M., Segev, G., Aharonson, N., Ben-Aziz, O., Turniansky, A., & Avnir, D. (1998). Sol-gel-entrapped cholinesterases: a microtiter plate method for monitoring anti-cholinesterase compounds. Journal of Agricultural and Food Chemistry, 46, 3318–3324.

    Article  CAS  Google Scholar 

  49. Chen, J.-P., & Lin, W.-S. (2003). Sol-gel powders and supported sol-gel polymers for immobilization of lipase in ester synthesis. Enzyme and Microbial Technology, 32, 801–811.

    Article  CAS  Google Scholar 

  50. Zhao, Z. Y., Liu, J., Hahn, M., Qiao, S., Middelberg, A. P., & He, L. (2013). Encapsulation of lipase in mesoporous silica yolk–shell spheres with enhanced enzyme stability. RSC Advances, 3, 22008–22013.

    Article  CAS  Google Scholar 

  51. Zhou, Z., & Hartmann, M. (2013). Progress in enzyme immobilization in ordered mesoporous materials and related applications. Chemical Society Reviews, 42, 3894–3912.

    Article  CAS  Google Scholar 

  52. Secundo, F. (2013). Conformational changes of enzymes upon immobilisation. Chemical Society Reviews, 42, 6250–6261.

    Article  CAS  Google Scholar 

  53. Ren, G., & Yu, H. (2011). Oriented adsorptive immobilization of esterase BioH based on protein structure analysis. Biochemical Engineering Journal, 53, 286–291.

    Article  CAS  Google Scholar 

  54. Sereti, V., Zoumpanioti, M., Papadimitriou, V., Pispas, S., & Xenakis, A. (2014). Biocolloids based on amphiphilic block copolymers as a medium for enzyme encapsulation. The Journal of Physical Chemistry B, 118, 9808–9816.

    Article  CAS  Google Scholar 

  55. Kalantari, M., Kazemeini, M., Tabandeh, F., & Arpanaei, A. (2012). Lipase immobilisation on magnetic silica nanocomposite particles: effects of the silica structure on properties of the immobilised enzyme. Journal of Materials Chemistry, 22, 8385–8393.

    Article  CAS  Google Scholar 

  56. Jaeger, K.-E., & Eggert, T. (2002). Lipases for biotechnology. Current Opinion in Biotechnology, 13, 390–397.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (Nos. 21276060, 21276062, and 21306039), the Natural Science Foundation of Tianjin (13JCYBJC18500), the Science and Technology Research Key Project of Higher School in Hebei Province (YQ2013025), the Natural Science Foundation of Hebei Province (B2015202082), Project of Science and Technology of Hebei Province (13273607 and 13274314), and Tianjin City High School Science & Technology Fund Planning Project (20140513).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Gao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 694 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Sun, W., Zhou, L. et al. Improved Performance of Lipase Immobilized on Tannic Acid-Templated Mesoporous Silica Nanoparticles. Appl Biochem Biotechnol 179, 1155–1169 (2016). https://doi.org/10.1007/s12010-016-2056-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2056-1

Keywords

Navigation