Skip to main content
Log in

Physicochemical Properties and Storage Stability of Microencapsulated DHA-Rich Oil with Different Wall Materials

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study aimed to evaluate the physicochemical properties and storage stability of microencapsulated DHA-rich oil spray dried with different wall materials: model 1 (modified starch, gum arabic, and maltodextrin), model 2 (soy protein isolate, gum arabic, and maltodextrin), and model 3 (casein, glucose, and lactose). The results indicated that model 3 exhibited the highest microencapsulation efficiency (98.66 %) and emulsion stability (>99 %), with a moisture content and mean particle size of 1.663 % and 14.173 μm, respectively. Differential scanning calorimetry analysis indicated that the Tm of DHA-rich oil microcapsules was high, suggesting that the entire structure of the microcapsules remained stable during thermal processing. A thermogravimetric analysis curve showed that the product lost 5 % of its weight at 172 °C and the wall material started to degrade at 236 °C. The peroxide value of microencapsulated DHA-rich oil remained at one ninth after accelerated oxidation at 45 °C for 8 weeks to that of the unencapsulated DHA-rich oil, thus revealing the promising oxidation stability of DHA-rich oil in microcapsules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ursin, V. M. (2003). Modification of plant lipids for human health: development of functional land-based omega-3 fatty acids. The Journal of Nutrition, 133(12), 4271–4274.

    CAS  Google Scholar 

  2. Roynette, C. E., Calder, P. C., Dupertuis, Y. M., & Pichard, C. (2004). n-3 polyunsaturated fatty acids and colon cancer prevention. Clinical Nutrition, 23(2), 139–151.

    Article  CAS  Google Scholar 

  3. Yu, X. J., Yu, Z. Q., Liu, Y. L., Sun, J., Zheng, J. Y., & Wang, Z. (2015). Utilization of high-fructose corn syrup for biomass production containing high levels of docosahexaenoic acid by a newly isolated Aurantiochytrium sp. YLH70. Applied Biochemistry and Biotechnology, 177(6), 1229–1240.

    Article  CAS  Google Scholar 

  4. Pyle, D. J., Garcia, R. A., & Wen, Z. (2008). Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition. Journal of Agricultural and Food Chemistry, 56(11), 3933–3939.

    Article  CAS  Google Scholar 

  5. Zhang, Y., Min, Q. S., Xu, J., Zhang, K., Chen, S. L., Wang, H. J., & Li, D. M. (2016). Effect of malate on docosahexaenoic acid production from Schizochytrium sp. B4D1. Electronic Journal of Biotechnology, 19, 56–60.

    Article  CAS  Google Scholar 

  6. Gharibi, S., Tabatabaei, B. E. S., Saeidi, G., & Goli, S. A. H. (2016). Effect of drought stress on total phenolic, lipid peroxidation, and antioxidant activity of Achillea species. Applied Biochemistry and Biotechnology, 178(4), 796–809.

    Article  CAS  Google Scholar 

  7. Young, S. L., Salda, X., & Rosenberg, M. (1993). Microencapsulating properties of whey proteins. 1. Microencapsulation of anhydrous milk fat. Journal of Dairy Science, 76(10), 2868–2877.

    Article  CAS  Google Scholar 

  8. Calvo, P., Hernández, T., Lozano, M., & González-Gómez, D. (2010). Microencapsulation of extra-virgin olive oil by spray-drying: influence of wall material and olive quality. European Journal of Lipid Science and Technology, 112(8), 852–858.

    Article  CAS  Google Scholar 

  9. Kanakdande, D., Bhosale, R., & Singhal, R. S. (2007). Stability of cumin oleoresin microencapsulated in different combination of gum arabic, maltodextrin and modified starch. Carbohydrate Polymers, 67(4), 536–541.

    Article  CAS  Google Scholar 

  10. Jafari, S. M., Assadpoor, E., He, Y., & Bhandari, B. (2008). Encapsulation efficiency of food flavours and oils during spray drying. Drying Technology, 26(7), 816–835.

    Article  Google Scholar 

  11. Aghbashlo, M., Mobli, H., Madadlou, A., & Rafiee, S. (2012). The correlation of wall material composition with flow characteristics and encapsulation behavior of fish oil emulsion. Food Research International, 49(1), 379–388.

    Article  CAS  Google Scholar 

  12. Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Research International, 40(9), 1107–1121.

    Article  CAS  Google Scholar 

  13. Carneiro, H. C. F., Tonon, R. V., Grosso, C. R. F., & Hubinger, M. D. (2013). Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. Journal of Food Engineering, 115(4), 443–451.

    Article  CAS  Google Scholar 

  14. Hosseini, A., Jafari, S. M., Mirzaei, H., Asghari, A., & Khavan, S. (2015). Application of image processing to assess emulsion stability and emulsification properties of Arabic gum. Carbohydrate Polymers, 126(1), 1–8.

    Article  CAS  Google Scholar 

  15. Shu, B., Yu, W., Zhao, Y., & Liu, X. (2006). Study on microencapsulation of lycopene by spray-drying. Journal of Food Engineering, 76(4), 664–669.

    Article  CAS  Google Scholar 

  16. Wang, W. Q., Bao, Y. H., & Chen, Y. (2013). Characteristics and antioxidant activity of water-soluble Maillard reaction products from interactions in a whey protein isolate and sugars system. Food Chemistry, 139(1-4), 355–361.

    Article  CAS  Google Scholar 

  17. Augustin, M. A., Sanguansri, L., & Bode, O. (2006). Maillard reaction products as encapsulants for fish oil powders. Journal of Food Science, 71(2), E25–E32.

    Article  CAS  Google Scholar 

  18. Fang, Z., & Bhandari, B. (2011). Effect of spray drying and storage on the stability of bayberry polyphenols. Food Chemistry, 129(3), 1139–1147.

    Article  CAS  Google Scholar 

  19. Ge, X., Wan, Z., Song, N., Fan, A., & Wu, R. (2009). Efficient methods for the extraction and microencapsulation of red pigments from a hybrid rose. Journal of Food Engineering, 94(1), 122–128.

    Article  CAS  Google Scholar 

  20. Sansone, F., Mencherini, T., Picerno, P., d’Amore, M., Aquino, R. P., & Lauro, M. R. (2011). Maltodextrin/pectin microparticles by spray drying as carrier for nutraceutical extracts. Journal of Food Engineering, 105(3), 468–476.

    Article  CAS  Google Scholar 

  21. Bae, E. K., & Lee, S. J. (2008). Microencapsulation of avocado oil by spray drying using whey protein and maltodextrin. Journal of Microencapsulation, 25(8), 549–560.

    Article  CAS  Google Scholar 

  22. Xie, X. J. (2009). Microcapsule preparation of algal oil DHA by emulsification spray drying and its application in milk industry. Master thesis: Huazhong Agricultural University, China.

  23. Pourashouri, P., Shabanpour, B., Razavi, S. H., Jafari, S. M., Shabani, A., & Aubourg, S. P. (2014). Impact of wall materials on physicochemical properties of microencapsulated fish oil by spray drying. Food and Bioprocess Technology, 7(8), 2354–2365.

    Article  CAS  Google Scholar 

  24. Tang, C. H., & Li, X. R. (2012). Microencapsulation properties of soy protein isolate and storage stability of the correspondingly spray-dried emulsions. Food Research International, 52(1), 419–428.

    Article  Google Scholar 

  25. Martínez, M. L., Curti, M. I., Roccia, P., Llabot, J. M., Penci, M. C., Bodoira, R. M., & Ribotta, P. D. (2015). Oxidative stability of walnut (Juglans regia L.) and chia (Salvia hispanica L.) oils microencapsulated by spray drying. Powder Technology, 270(Part A), 271–277.

    Article  Google Scholar 

  26. Xiang, H. D. (2008). Preparation of antioxidant wall material and its application on microencapsulation of fish oil. Master thesis: Jiangnan university, China.

  27. Ixtaina, V. Y., Julio, L. M., Wagner, J. R., Nolasco, S. M., & Tomás, M. C. (2015). Physicochemical characterization and stability of chia oil microencapsulated with sodium caseinate and lactose by spray-drying. Powder Technology, 271, 26–34.

    Article  CAS  Google Scholar 

  28. Frascareli, E. C., Silvaa, V. M., Tonona, R. V., & Hubinger, M. D. (2012). Effect of process conditions on the microencapsulation of coffee oil by spray drying. Food and Bioproducts Processing, 90(3), 413–424.

    Article  CAS  Google Scholar 

  29. Jafari, S. M., Assadpoor, E., Bhandari, B., & He, Y. (2008). Nano-particle encapsulation of fish oil by spray drying. Food Research International, 41(2), 172–183.

    Article  CAS  Google Scholar 

  30. Fritzen-Freire, C. B., Prudêncio, E. S., Amboni, R. D. M. C., Pinto, S. S., Negrão-Murakami, A. N., & Murakami, F. S. (2012). Microencapsulation of bifidobacteria by spray drying in the presence of prebiotics. Food Research International, 45(1), 306–312.

    Article  CAS  Google Scholar 

  31. Khazaei, K. M., Jafari, S., Ghorbani, M., & Kakhki, A. H. (2014). Application of maltodextrin and gum Arabic in microencapsulation of saffron petal’s anthocyanins and evaluating their storage stability and color. Carbohydrate Polymers, 105, 57–62.

    Article  Google Scholar 

  32. Hogan, S. A., McNamee, B. F., O’Riordan, E. D., & O’Sullivan, M. (2001). Microencapsulating properties of sodium caseinate. Journal of Agricultural and Food Chemistry, 49(4), 1934–1938.

    Article  CAS  Google Scholar 

  33. Masters, K. (1991). Spray drying handbook (5th ed.). London: Longman Scientific & Technical.

    Google Scholar 

  34. Millqvist-Fureby, A., Elofsson, U., & Bergenståhl, B. (2001). Surface composition of spray-dried milk protein-stabilised emulsions in relation to pre-heat treatment of proteins. Colloids and Surfaces. B, Biointerfaces, 21(1), 47–58.

    Article  CAS  Google Scholar 

  35. Nayak, C. A., & Rastogi, N. K. (2010). Effect of selected additives on microencapsulation of anthocyanin by spray drying. Drying Technology, 28(12), 1396–1404.

    Article  CAS  Google Scholar 

  36. Partanen, R., Hakala, M., Sjövall, O., Kallio, H., & Forssell, P. (2005). Effect of relative humidity on the oxidative stability of microencapsulated sea buckthorn seed oil. Journal of Food Science, 70(1), 37–43.

    Article  Google Scholar 

  37. Drusch, S., Serfert, Y., Scampicchio, M., Hansberg, B. S., & Schwarz, K. (2007). Impact of physicochemical characteristics on the oxidative stability of fish oil microencapsulated by spray-drying. Journal of Agricultural and Food Chemistry, 55(26), 11044–11051.

    Article  CAS  Google Scholar 

  38. Quispe-Condori, S., Saldaña, M. D. A., & Temelli, F. (2011). Microencapsulation of flax oil with zein using spray and freeze drying. LWT - Food Science and Technology, 44(9), 1880–1887.

    Article  CAS  Google Scholar 

  39. Jafari, S. M., He, Y., & Bhandari, B. (2007). Encapsulation of nanoparticles of d-limonene by spray drying: role of emulsifiers and emulsifying techniques. Drying Technology, 25(6), 1069–1079.

    Article  CAS  Google Scholar 

  40. Mahdavi, S. A., Jafari, S. M., Assadpoor, E., & Dehnad, D. (2016). Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin. International Journal of Biological Macromolecules, 85, 379–385.

    Article  Google Scholar 

  41. Augustin, M. A., Sanguanstri, L., Margetts, C., & Young, B. (2001). Microencapsulation of food ingredients. Food Australia, 53(6), 220–223.

    Google Scholar 

  42. Tonon, R. V., Grosso, C. R. F., & Hubinger, M. D. (2011). Influence of emulsion composition and inlet air temperature on the microencapsulation of flaxseed oil by spray drying. Food Research International, 44(1), 282–289.

    Article  CAS  Google Scholar 

  43. Rodrigues, R. A. F., & Grosso, C. R. F. (2008). Cashew gum microencapsulation protects the aroma of coffee extracts. Journal of Microencapsulation, 25(1), 13–20.

    Article  CAS  Google Scholar 

  44. O’Regan, J., & Mulvihill, D. M. (2010). Sodium caseinate—maltodextrin conjugate stabilized double emulsions: Encapsulation and stability. Food Research International, 43(1), 224–231.

    Article  Google Scholar 

  45. Liu, Y., Bhandari, B., & Zhou, W. (2006). Glass transition and enthalpy relaxation of amorphous food saccharides: a review. Journal of Agricultural and Food Chemistry, 54(16), 5701–5717.

    Article  CAS  Google Scholar 

  46. Saldo, J., Sendra, E., & Guamis, B. (2002). Changes in water binding in high-pressure treated cheese, measured by TGA (thermogravimetrical analysis). Innovative Food Science and Emerging Technologies, 3(3), 203–207.

    Article  CAS  Google Scholar 

  47. Macêdo, R. O., Moura, O. M., Souza, A. G., & Macêdo, A. M. C. (1997). Comparative studies on some analytical methods: thermal decomposition of powder milk. Journal of Thermal Analysis and Calorimetry, 49(2), 857–862.

    Article  Google Scholar 

  48. Wang, R. X., Tian, Z. G., & Chen, L. Y. (2011). A novel process for microencapsulation of fish oil with barley protein. Food Research International, 44(9), 2735–2741.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the International Cooperation Project (Grant No. 2014DFA61040), the Youth Innovation Promotion Association CAS, and the Hi-Tech Research and Development Program (863) of China (Grant No. 2014ARA021701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Wang, H., Zhang, K. et al. Physicochemical Properties and Storage Stability of Microencapsulated DHA-Rich Oil with Different Wall Materials. Appl Biochem Biotechnol 179, 1129–1142 (2016). https://doi.org/10.1007/s12010-016-2054-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2054-3

Keywords

Navigation