Skip to main content

Advertisement

Log in

Enhanced H2 Production and Redirected Metabolic Flux via Overexpression of fhlA and pncB in Klebsiella HQ-3 Strain

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Genetic modifications are considered as one of the most important technologies for improving fermentative hydrogen yield. Herein, we overexpress fhlA and pncB genes from Klebsiella HQ-3 independently to enhance hydrogen molar yield. HQ-3-fhlA/pncB strain is developed by manipulation of pET28-Pkan/fhlA Kanr and pBBR1-MCS5/pncB Gmr as expression vectors to examine the synchronous effects of fhlA and pncB. Optimization of anaerobic batch fermentations is achieved and the maximum yield of biohydrogen (1.42 mol H2/mol of glucose) is produced in the range of pH 6.5–7.0 at 33–37 °C. Whole cell H2 yield is increased up to 40 % from HQ-3-fhlA/pncB, as compared with HQ-3-fhlA 20 % and HQ-3-pncB 12 % keeping HQ-3-C as a control. Mechanism of improved H2 yield is studied in combination with metabolic flux analysis by measuring glucose consumption and other metabolites including formate, succinate, 2,3 butanediol, lactate, acetate, ethanol, and hydrogen. The results suggest that under transient conditions, the increase in the total level of NAD by NAPRTase can enhance the rate of NADH-dependent pathways, and therefore, final distribution of metabolites is changed. Combined overexpression of fhlA and pncB eventually modifies the energy and carbon balance leading to enhanced H2 production from FHL as well as by NADH pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mathews, J., & Wang, G. (2009). Metabolic pathway engineering for enhanced biohydrogen production. Int J Hydrog Energy, 34, 7404–16.

    Article  CAS  Google Scholar 

  2. Lin, C. Y., & Lay, C. H. (2004). Effects of carbonate and phosphate concentrations on hydrogen production using anaerobic sewage sludge microflora. Int J Hydrog Energy, 29, 275–81.

    Article  CAS  Google Scholar 

  3. Oh, S. E., Van Ginkel, S., & Logan, B. E. (2003). The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. Environ Sci Technol, 37, 5186–90.

    Article  CAS  Google Scholar 

  4. Kheshgi, H. S., & Prince, R. C. (2005). Sequestration of fermentation CO2 from ethanol production. Energy, 30, 1865–71.

    Article  CAS  Google Scholar 

  5. Levin, D. B., Pitt, L., & Love, M. (2004). Biohydrogen production: prospects and limitations to practical application. Int J Hydrog Energy, 29, 173–85.

    Article  CAS  Google Scholar 

  6. Brentner, L. B., Peccia, J., & Zimmerman, J. B. (2010). Challenges in developing biohydrogen as a sustainable energy source: implications for a research agenda. Environ Sci Technol, 44, 2243–54.

    Article  CAS  Google Scholar 

  7. Koku, H., Eroğlu Gündüz, U., Yücel, M., & Türker, L. (2002). Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides. Int J Hydrog Energy, 27, 1315–29.

    Article  CAS  Google Scholar 

  8. Dubini, A., & Ghirardi, M. L. (2015). Engineering photosynthetic organisms for the production of biohydrogen. Photosynth Res, 123, 241–53.

    Article  CAS  Google Scholar 

  9. Maeda, T., Sanchez‐Torres, V., & Wood, T. K. (2012). Hydrogen production by recombinant Escherichia coli strains. J Microbial Biotechnol, 5, 214–25.

    Article  CAS  Google Scholar 

  10. Sinha, P., & Pandey, A. (2011). An evaluative report and challenges for fermentative biohydrogen production. Int J Hydrog Energy, 36, 7460–78.

    Article  CAS  Google Scholar 

  11. Seol, E., Jang, Y., Kim, S., Oh, Y. K., & Park, S. (2012). Engineering of formate-hydrogen lyase gene cluster for improved hydrogen production in Escherichia coli. Int J Hydrog Energy, 37, 15045–51.

    Article  CAS  Google Scholar 

  12. Wang, S., Wang, J., Xu, L., Pi, J., Zhang, H., & Yan, Y. (2013). Enhanced biohydrogen production by homologous over-expression of fnr, pncB, fdhF in Klebsiella sp. HQ-3. Sheng Wu Gong Cheng Xue Bao, 29, 1278–89.

    CAS  Google Scholar 

  13. Leonhartsberger, S., Ehrenreich, A., & Böck, A. (2000). Analysis of the domain structure and the DNA binding site of the transcriptional activator FhlA. Eur J Biochem, 267, 3672–84.

    Article  CAS  Google Scholar 

  14. Schlensog, V., & Böck, A. (1990). Identification and sequence analysis of the gene encoding the transcriptional activator of the formate hydrogenlyase system of Escherichia coli. Mol Microbiol, 4, 1319–27.

    Article  CAS  Google Scholar 

  15. Sanchez-Torres, V., Maeda, T., & Wood, T. K. (2009). Protein engineering of the transcriptional activator FhlA to enhance hydrogen production in Escherichia coli. Appl Environ Microbiol, 75, 5639–46.

    Article  CAS  Google Scholar 

  16. Leonhartsberger, S., Korsa, I., & Bock, A. (2002). The molecular biology of formate metabolism in Enterobacteria. J Mol Microbiol Biotechnol, 4, 269–76.

    CAS  Google Scholar 

  17. Sauter, M., Bohm, R., & Bock, A. (1992). Mutational analysis of the operon (hyc) determining hydrogenase 3 formation in Escherichia coli. Mol Microbiol, 6, 1523–32.

    Article  CAS  Google Scholar 

  18. Liang, L., Liu, R., Wang, G., Gou, D., Ma, J., Chen, K., Jiang, M., Wei, P., & Ouyang, P. (2012). Regulation of NAD(H) pool and NADH/NAD+ ratio by overexpression of nicotinic acid phosphoribosyltransferase for succinic acid production in Escherichia coli NZN111. Enzyme Microb Technol, 51, 286–93.

    Article  CAS  Google Scholar 

  19. Wu, H., Li, Z., Zhou, L., & Ye, Q. (2007). Improved succinic acid production in the anaerobic culture of an Escherichia coli pflB ldhA double mutant as a result of enhanced anaplerotic activities in the preceding aerobic culture. Appl Environ Microbiol, 73, 7837–43.

    Article  CAS  Google Scholar 

  20. San, K. Y., Bennett, G. N., Berrios-Rivera, S. J., Vadali, R. V., Yang, Y. T., Horton, E., Rudolph, F. B., Sariyar, B., & Blackwood, K. (2002). Metabolic engineering through cofactor manipulation and its effects on metabolic flux redistribution in Escherichia coli. Metab Eng, 4, 182–92.

    Article  CAS  Google Scholar 

  21. Berrı, X., Os-Rivera, S. J., San, K. Y., & Bennett, G. N. (2002). The effect of NAPRTase overexpression on the total levels of NAD, the NADH/NAD+ ratio, and the distribution of metabolites in Escherichia coli. Metab Eng, 4, 238–47.

    Article  Google Scholar 

  22. Wang, J., Yu, W., Xu, L., Wang, S., & Yan, Y. (2013). Effects of increasing the NAD(H) pool on hydrogen production and metabolic flux distribution in Enterobacter aerogenes mutants. Int J Hydrog Energy, 38, 13204–15.

    Article  CAS  Google Scholar 

  23. Heuser, F., Schroer, K., Lütz, S., Bringer-Meyer, S., & Sahm, H. (2007). Enhancement of the NAD(P)(H) pool in Escherichia coli for biotransformation. Eng Life Sci, 7, 343–53.

    Article  CAS  Google Scholar 

  24. Ma, Z., Rao, Z., Zhuge, B., Fang, H., Liao, X., & Zhuge, J. (2010). Construction of a novel expression system in Klebsiella pneumoniae and its application for 1,3-propanediol production. Appl Biochem Biotechnol, 162, 399–407.

    Article  CAS  Google Scholar 

  25. Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M., & Peterson, K. M. (1995). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene, 166, 175–6.

    Article  CAS  Google Scholar 

  26. Ito, T., Nakashimada, Y., Kakizono, T., & Nishio, N. (2004). High-yield production of hydrogen by Enterobacter aerogenes mutants with decreased alpha-acetolactate synthase activity. J Biosci Bioeng, 97, 227–32.

    Article  CAS  Google Scholar 

  27. Maupin, J. A., & Shanmugam, K. T. (1990). Genetic regulation of formate hydrogenlyase of Escherichia coli: role of the fhlA gene product as a transcriptional activator for a new regulatory gene, fhlB. J Bacteriol, 172, 4798–806.

    CAS  Google Scholar 

  28. Sawers, R. G. (2005). Formate and its role in hydrogen production in Escherichia coli. Biochem Soc Trans, 33, 42–6.

    Article  CAS  Google Scholar 

  29. Si, B., Liu, Z., Zhang, Y., Li, J., Xing, X.-H., Li, B., Duan, N., & Lu, H. (2015). Effect of reaction mode on biohydrogen production and its microbial diversity. Int J Hydrog Energy, 40, 3191–200.

    Article  CAS  Google Scholar 

  30. Lee, K. S., Lin, P. J., & Chang, J. S. (2006). Temperature effects on biohydrogen production in a granular sludge bed induced by activated carbon carriers. Int J Hydrog Energy, 31, 465–72.

    Article  CAS  Google Scholar 

  31. Wu, K. J., Saratale, G. D., Lo, Y. C., Chen, W. M., Tseng, Z. J., Chang, M. C., Tsai, B. C., Su, A., & Chang, J. S. (2008). Simultaneous production of 2,3-butanediol, ethanol and hydrogen with a Klebsiella sp. strain isolated from sewage sludge. Bioresour Technol, 99, 7966–70.

    Article  CAS  Google Scholar 

  32. Sánchez, A. M., Bennett, G. N., & San, K.-Y. (2005). Effect of different levels of NADH availability on metabolic fluxes of Escherichia coli chemostat cultures in defined medium. J Biotechnol, 117, 395–405.

    Article  Google Scholar 

  33. Yu, M., Huang, M., Song, Q., Shao, J., & Ying, X. (2015). Characterization of a (2R, 3R)-2,3-butanediol dehydrogenase from Rhodococcus erythropolis WZ010. Molecules, 20, 7156–73.

    Article  CAS  Google Scholar 

  34. Plapp, B. V., Leidal, K. G., Murch, B., Green, P., & David, W. (2015). Contribution of liver alcohol dehydrogenase to metabolism of alcohols in rats. Chem Biol Interact, 234, 85–95.

    Article  CAS  Google Scholar 

  35. Yoshida, A., Nishimura, T., Kawaguchi, H., Inui, M., & Yukawa, H. (2006). Enhanced hydrogen production from glucose using ldh- and frd-inactivated Escherichia coli strains. Appl Microbiol Biotechnol, 73, 67–72.

    Article  CAS  Google Scholar 

  36. Lu, Y., Zhao, H., Zhang, C., Lai, Q., & Xing, X. (2009). Perturbation of formate pathway for hydrogen production by expressions of formate hydrogen lyase and its transcriptional activator in wild Enterobacter aerogenes and its mutants. Int J Hydrog Energy, 34, 5072–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (HUST: 2010MS029) and the National Natural Science Foundation of P. R. China (NSFC) (Nos. 31070089 and 31170078). The authors are deeply indebted to the Analytical and Testing Center of Huazhong University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunjun Yan.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jawed, M., Pi, J., Xu, L. et al. Enhanced H2 Production and Redirected Metabolic Flux via Overexpression of fhlA and pncB in Klebsiella HQ-3 Strain. Appl Biochem Biotechnol 178, 1113–1128 (2016). https://doi.org/10.1007/s12010-015-1932-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1932-4

Keywords

Navigation