Skip to main content
Log in

Rational Substitution of Surface Acidic Residues for Enhancing the Thermostability of Thermolysin

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Solvent-exposed acidic/amide residue (Asp/Glu or Asn/Gln) exerts great effects on the thermostability of protein; however, experimental attempts appear to be time-consuming, so a more scientific, simple, and effective rational strategy is necessary. In this study, molecular dynamic (MD) simulation was performed to analyze two surface acidic residues (Asp37 and Glu119) of thermolysin (TLN) in mediating its thermostability. Root-mean-square-deviation (RMSD) was calculated to evaluate the thermosensitivity effect by acidic/amide substitutions. The wild-type TLN and three mutants (TLM1, TLM2, and TLM) presented significantly different thermostability effect. Four profiles of RMSD values demonstrated that the thermal insensitivity of variants were TLM2 > TLM > TLN > TLM1. As expected, the thermostability and half-life (at 60 °C) behavior of enzyme variants showed the same trends with the computational predictions, and it was worth noting that the half-life of TLM2 showed 3.1-fold longer than that of wild-type. The T m and T 50 of TLM2 were 9 and 7 °C higher, respectively, than that of wild-type enzyme. Rational substitution of acidic/amide residue in regulation of thermostability using MD simulation would be an efficient approach for instructional design to improve the thermostability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fágáin, C. Ó. (1995). Understanding and increasing protein stability. Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology, 1252, 1–14.

    Article  Google Scholar 

  2. Irun, M. P., Maldonado, S., & Sancho, J. (2001). Stabilization of apoflavodoxin by replacing hydrogen-bonded charged Asp or Glu residues by the neutral isosteric Asn or Gln. Protein Engineering, 14, 173–181.

    Article  CAS  Google Scholar 

  3. Xue, H. P., Zhou, J. G., You, C., Huang, Q., & Lu, H. (2012). Amino acid substitutions in the N-terminus, cord and alpha-helix domains improved the thermostability of a family 11 xylanase XynR8. Journal of Industrial Microbiology & Biotechnology, 39, 1279–1288.

    Article  CAS  Google Scholar 

  4. Sanchez-Torres, P., Visser, J., & Benen, J. A. E. (2003). Identification of amino acid residues critical for catalysis and stability in Aspergillus niger family 1 pectin lyase A. Biochemical Journal, 370, 331–337.

    Article  CAS  Google Scholar 

  5. Abraham, T., Pack, S. P., & Yoo, Y. J. (2005). Stabilization of Bacillus subtilis lipase a by increasing the residual packing. Biocatalysis and Biotransformation, 23, 217–224.

    Article  CAS  Google Scholar 

  6. Woolfson, D. N. (2001). Core-directed protein design. Current Opinion in Structural Biology, 11, 464–471.

    Article  CAS  Google Scholar 

  7. Kim, S. J., Lee, J. A., Joo, J. C., Yoo, Y. J., Kim, Y. H., & Song, B. K. (2010). The development of a thermostable CiP (Coprinus cinereus peroxidase) through in silico design. Biotechnology Progress, 26, 1038–1046.

    CAS  Google Scholar 

  8. de Kreij, A., van den Burg, B., Venema, G., Vriend, G., Eijsink, V. G. H., & Nielsen, J. E. (2002). The effects of modifying the surface charge on the catalytic activity of a thermolysin-like protease. Journal of Biological Chemistry, 277, 15432–15438.

    Article  Google Scholar 

  9. Singh, S. K., Heng, C., Braker, J. D., Chan, V. J., Lee, C. C., Jordan, D. B., Yuan, L., & Wagschal, K. (2014). Directed evolution of GH43 beta-xylosidase XylBH43 thermal stability and L186 saturation mutagenesis. Journal of Industrial Microbiology & Biotechnology, 41, 489–498.

    Article  CAS  Google Scholar 

  10. Akcapinar, G. B., Venturini, A., Martelli, P. L., Casadio, R., & Sezerman, U. O. (2015). Modulating the thermostability of endoglucanase I from Trichoderma reesei using computational approaches. Protein Engineering, Design & Selection, 28, 127–135.

    Article  CAS  Google Scholar 

  11. Liu, J., Yu, H. M., & Shen, Z. Y. (2008). Insights into thermal stability of thermophilic nitrile hydratases by molecular dynamics simulation. Journal of Molecular Graphics & Modelling, 27, 529–535.

    Article  Google Scholar 

  12. Pikkemaat, M. G., Linssen, A. B. M., Berendsen, H. J. C., & Janssen, D. B. (2002). Molecular dynamics simulations as a tool for improving protein stability. Protein Engineering, 15, 185–192.

    Article  CAS  Google Scholar 

  13. Chen, J., Yu, H. M., Liu, C. C., Liu, J., & Shen, Z. Y. (2012). Improving stability of nitrile hydratase by bridging the salt-bridges in specific thermal-sensitive regions. Journal of Biotechnology, 164, 354–362.

    Article  CAS  Google Scholar 

  14. Colombo, G., & Merz, K. M. (1999). Stability and activity of mesophilic subtilisin E and its thermophilic homolog: insights from molecular dynamics simulations. Journal of the American Chemical Society, 121, 6895–6903.

    Article  CAS  Google Scholar 

  15. Asghari, S. M., Pazhang, M., Ehtesham, S., Karbalaei-Heidari, H. R., Taghdir, M., Sadeghizadeh, M., Naderi-Manesh, H., & Khajeh, K. (2010). Remarkable improvements of a neutral protease activity and stability share the same structural origins. Protein Engineering, Design & Selection, 23, 599–606.

    Article  CAS  Google Scholar 

  16. Inouye, K., Kusano, M., Hashida, Y., Minoda, M., & Yasukawa, K. (2007). Engineering, expression, purification, and production of recombinant thermolysin. Biotechnology Annual Review, 13, 43–64.

    Article  CAS  Google Scholar 

  17. Latt, S. A., Holmquis, B., & Vallee, B. L. (1969). Thermolysin—a zinc metalloenzyme. Biochemical and Biophysical Research Communications, 37, 333–339.

    Article  CAS  Google Scholar 

  18. Mansfeld, J., Vriend, G., Dijkstra, B. W., Veltman, O. R., VandenBurg, B., Venema, G., UlbrichHofmann, R., & Eijsink, V. G. H. (1997). Extreme stabilization of a thermolysin-like protease by an engineered disulfide bond. Journal of Biological Chemistry, 272, 11152–11156.

    Article  CAS  Google Scholar 

  19. Van den Burg, B., Vriend, G., Veltman, O. R., Venema, G., & Eunsink, V. G. H. (1998). Engineering an enzyme to resist boiling. Proceedings of the National Academy of Sciences, 95, 2056–2060.

    Article  Google Scholar 

  20. Eijsink, V. G. H., Matthews, B. W., & Vriend, G. (2011). The role of calcium ions in the stability and instability of a thermolysin-like protease. Protein Science, 20, 1346–1355.

    Article  CAS  Google Scholar 

  21. O’Donohue, M. J., Roques, B. P., & Beaumont, A. (1994). Cloning and expression in bacillus subtilis of the npr gene from Bacillus thermoproteolyticus ROKKO coding for the thermostable metalloprotease thermolysin. Biochemical Journal, 300, 599–603.

    Article  Google Scholar 

  22. Holland, D. R., Hausrath, A. C., Juers, D., & Matthews, B. W. (1995). Structural-analysis of zinc substitutions in the active-site of thermolysin. Protein Science, 4, 1955–1965.

    Article  CAS  Google Scholar 

  23. Van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: fast, flexible, and free. Journal of Computational Chemistry, 26, 1701–1718.

    Article  Google Scholar 

  24. Hermans, J., Berendsen, H. J. C., Vangunsteren, W. F., & Postma, J. P. M. (1984). A consistent empirical potential for water-protein interactions. Biopolymers, 23, 1513–1518.

    Article  CAS  Google Scholar 

  25. Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. (1997). LINCS: a linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18, 1463–1472.

    Article  CAS  Google Scholar 

  26. Tang, X. Y., Pan, Y., Li, S., & He, B. F. (2008). Screening and isolation of an organic solvent-tolerant bacterium for high-yield production of organic solvent-stable protease. Bioresource Technology, 99, 7388–7392.

    Article  CAS  Google Scholar 

  27. Kawasaki, Y., Yasukawa, K., & Inouye, K. (2013). Effects of site-directed mutagenesis in the N-terminal domain of thermolysin on its stabilization. Journal of Biochemistry, 153, 85–92.

    Article  CAS  Google Scholar 

  28. Park, H. J., Park, K., Kim, Y. H., & Yoo, Y. J. (2014). Computational approach for designing thermostable Candida antarctica lipase B by molecular dynamics simulation. Journal of Biotechnology, 192, 66–70.

    Article  CAS  Google Scholar 

  29. Tian, J., Wang, P., Gao, S., Chu, X., Wu, N., & Fan, Y. (2010). Enhanced thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 by rational engineering of a glycine to proline mutation. Febs Journal, 277, 4901–4908.

    Article  CAS  Google Scholar 

  30. Xie, B.-B., Bian, F., Chen, X.-L., He, H.-L., Guo, J., Gao, X., Zeng, Y.-X., Chen, B., Zhou, B.-C., & Zhang, Y.-Z. (2009). Cold adaptation of zinc metalloproteases in the thermolysin family from deep sea and arctic sea ice bacteria revealed by catalytic and structural properties and molecular dynamics: new insights into relationship between conformational flexibility and hydrogen bonding. Journal of Biological Chemistry, 284, 9257–9269.

    Article  CAS  Google Scholar 

  31. Joo, J. C., Pack, S. P., Kim, Y. H., & Yoo, Y. J. (2011). Thermostabilization of Bacillus circulans xylanase: computational optimization of unstable residues based on thermal fluctuation analysis. Journal of Biotechnology, 151, 56–65.

    Article  CAS  Google Scholar 

  32. Joo, J. C., Pohkrel, S., Pack, S. P., & Yoo, Y. J. (2010). Thermostabilization of Bacillus circulans xylanase via computational design of a flexible surface cavity. Journal of Biotechnology, 146, 31–39.

    Article  CAS  Google Scholar 

  33. Larsen, D. M., Nyffenegger, C., Swiniarska, M. M., Thygesen, A., Strube, M. L., Meyer, A. S., & Mikkelsen, J. D. (2015). Thermostability enhancement of an endo-1,4-beta-galactanase from Talaromyces stipitatus by site-directed mutagenesis. Applied Microbiology and Biotechnology, 99, 4245–4253.

    Article  CAS  Google Scholar 

  34. Kumar, S., Tsai, C. J., & Nussinov, R. (2000). Factors enhancing protein thermostability. Protein Engineering, 13, 179–191.

    Article  CAS  Google Scholar 

  35. Jamil, S., Liu, M.-H., Liu, Y.-M., Han, R.-Z., Xu, G.-C., & Ni, Y. (2015). Hydrophobic mutagenesis and semi-rational engineering of arginine deiminase for markedly enhanced stability and catalytic efficiency. Applied Biochemistry and Biotechnology, 176, 1335–1350.

    Article  CAS  Google Scholar 

  36. Hesampour, A., Siadat, S. E. R., Malboobi, M. A., Mohandesi, N., Arab, S. S., & Ghahremanpour, M. M. (2015). Enhancement of thermostability and kinetic efficiency of Aspergillus niger PhyA phytase by site-directed mutagenesis. Applied Biochemistry and Biotechnology, 175, 2528–2541.

    Article  CAS  Google Scholar 

  37. Xu, J., Zhuang, Y., Wu, B., Su, L., & He, B. (2013). Calcium-ion-induced stabilization of the protease from Bacillus cereus WQ9-2 in aqueous hydrophilic solvents: effect of calcium ion binding on the hydration shell and intramolecular interactions. Journal of Biological Inorganic Chemistry, 18, 211–221.

    Article  CAS  Google Scholar 

  38. Kim, T., Joo, J. C., & Yoo, Y. J. (2012). Hydrophobic interaction network analysis for thermostabilization of a mesophilic xylanase. Journal of Biotechnology, 161, 49–59.

    Article  CAS  Google Scholar 

  39. Fernandez-Recio, J., Romero, A., & Sancho, J. (1999). Energetics of a hydrogen bond (charged and neutral) and of a cation-pi interaction in apoflavodoxin. Journal of Molecular Biology, 290, 319–330.

    Article  CAS  Google Scholar 

  40. Menach, E., Yasukawa, K., & Inouye, K. (2012). Effects of site-directed mutagenesis of Asn116 in the beta-hairpin of the N-terminal domain of thermolysin on its activity and stability. Journal of Biochemistry, 152, 231–239.

    Article  CAS  Google Scholar 

  41. Nelson, D. L., & Cox, M. M. (2004). Lehninger principles of biochemistry (4th ed.). New York: Freeman W.H. & Company.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Program on Key Basic Research Project (2011CBA00807), the National High Technology Research and Development Key Program of China (2012AA022205), and KYZZ_0228 from Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiahuang Li or Bingfang He.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 229 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, F., Zhuang, Y., Wu, B. et al. Rational Substitution of Surface Acidic Residues for Enhancing the Thermostability of Thermolysin. Appl Biochem Biotechnol 178, 725–738 (2016). https://doi.org/10.1007/s12010-015-1905-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1905-7

Keywords

Navigation