Skip to main content
Log in

Assessment of Antioxidant Enzyme Activity and Mineral Nutrients in Response to NaCl Stress and its Amelioration Through Glutathione in Chickpea

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Salinity stress has been reckoned as one of the major threat towards crop productivity as it causes significant decline in the yield. The impact of NaCl stress (0, 1, 10, 50, 100 and 200 mg L−1) as well as glutathione (10 mg L−1) either alone or in combination has been evaluated on the induction of multiple shoots, antioxidant enzymes’ activity, lipid peroxidation, relative permeability, concentration of nutrients, photosynthetic pigments, protein and proline content of nodal segments of chickpea after 14 days of culture. The antioxidant enzyme activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and glutathione reductase (GR) were found to be increased under salt stress as well as glutathione-supplemented medium. A significant decrease in the concentrations of chlorophylls a, b, total chlorophyll and carotenoid was observed under salt stress. Concentrations of nitrogen, phosphorus, potassium, calcium, carbon, magnesium and sulphur showed an initial increase up to 10 mg L−1 NaCl, but a decline was seen at higher NaCl levels. Proline content and malondialdehyde concentration were found to be increased under salt stress. Three isoforms of SOD, one of CAT and four of GPX were expressed during native polyacrylamide gel electrophoresis (PAGE) analysis. However, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of the stressed nodal explants revealed the over-expression of several polypeptide bands related to NaCl stress. These findings for the first time suggest that glutathione (GSH) helps in ameliorating NaCl stress in nodal explants of chickpea by manipulating various biochemical and physiological responses of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. FAO. (2009). The state of food insecurity in the world: addressing food security in protected crises.

  2. Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.

    Article  CAS  Google Scholar 

  3. Zhu, J. K. (2002). Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 53, 247–273.

    Article  CAS  Google Scholar 

  4. Zhu, J. K. (2003). Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 6, 441–445.

    Article  CAS  Google Scholar 

  5. Parida, A. K., Hari-Kishore, C. M., & Jha, B. (2010). Growth, ion homeostasis, photosynthesis and photosystem II efficiency of an obligate halophyte, Salicornia brachiata, under increasing salinity. Plant Biology, 13, 224.

    Article  Google Scholar 

  6. Hasegawa, P. M., Bressan, R. A., Zhu, J. K., & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology, 51, 463–499.

    Article  CAS  Google Scholar 

  7. Miller, G., Suzuki, N., Ciftci-Yılmaz, S., & Mittler, R. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell and Environment, 33, 453–467.

    Article  CAS  Google Scholar 

  8. Seckin, B., Turkan, I., Sekmen, A. H., & Ozfidan, C. (2009). The role of antioxidant defence system at differential salt tolerance of Hordeum marinum Huds. (sea barleygrass) and Hordeum vulgare L. (cultivated barley). Environmental and Experimental Botany, 69, 76–85.

    Article  Google Scholar 

  9. Sekmen, A. H., Turkan, I., & Takio, S. (2007). Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritime and salt-sensitive Plantago media. Physiologia Plantarum, 131, 399–411.

    Article  CAS  Google Scholar 

  10. McCord, J. M. (2000). The evolution of free radicals and oxidative stress. The American Journal of Medicine, 108, 652–659.

    Article  CAS  Google Scholar 

  11. Hernández, J. A., Jiménez, A., Mullineaux, P., & Sevilia, F. (2000). Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant, Cell and Environment, 23, 853–862.

    Article  Google Scholar 

  12. Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60, 324–349.

    Article  CAS  Google Scholar 

  13. Kong-ngern, K., Daduang, S., Wongkham, C., Bunnag, S., Kosittrakun, M., & Theerakulpisut, P. (2005). Protein profiles in response to salt stress in leaf sheaths of rice seedlings. Science Asia, 31, 403–408.

    Article  CAS  Google Scholar 

  14. Bruns, I., Sutter, K., Menge, S., Neumann, D., & Krauss, G. J. (2001). Cadmium lets increase the glutathione pool in bryophytes. Journal of Plant Physiology, 158, 79–89.

    Article  CAS  Google Scholar 

  15. Cobbett, C., & Goldsbrough, P. (2002). Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology, 53, 159–182.

    Article  CAS  Google Scholar 

  16. Salt, D. E., & Rauser, W. E. (1995). Mg-ATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiology, 107, 1293–1301.

    CAS  Google Scholar 

  17. Murahige, T., & Skoog, F. (1962). Revised medium for rapid growth and bioassay with tobacco culture. Physiologia Plantarum, 15, 473–497.

    Article  Google Scholar 

  18. Allen, S. E. (Ed.). (1989). Chemical analysis of ecological materials (2nd ed., p. 368 pp). Oxford: Blackwell.

    Google Scholar 

  19. Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24, 1–15.

    Article  CAS  Google Scholar 

  20. Zwiazek, J. J., & Blake, T. J. (1991). Early detection of membrane injury in black spruce (Picea mariana). Canadian Journal of Forest Research, 21, 401–404.

    Article  Google Scholar 

  21. Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189–198.

    Article  CAS  Google Scholar 

  22. Bates, L. S., Waldren, S. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205–207.

    Article  CAS  Google Scholar 

  23. Zivy, M., Thiellement, H., De-Vienne, D., & Hofmann, J. P. (1983). Study on nuclear and cytoplasmic genome expression in wheat by two-dimensional gel electrophoresis. I. First results on 18 alloplasmic lines. Theoretical and Applied Genetics, 66, 1–7.

    Article  CAS  Google Scholar 

  24. Elavarthi, S., & Martin, B. (2010). Spectrophotometric assays for antioxidant enzymes in plants. In R. Sunker (Ed.), Plant stress tolerance-methods in molecular biology (pp. 273–280). UK: Springer.

    Chapter  Google Scholar 

  25. Bradford, M. M. (1976). A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of the protein dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  26. Beyer, W., & Fridovich, I. (1987). Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochemistry, 161, 559–566.

    Article  CAS  Google Scholar 

  27. Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126.

    Article  CAS  Google Scholar 

  28. Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiology, 22, 867–880.

    CAS  Google Scholar 

  29. Thimmaiah, S.K. (1995). Standard methods of biochemical analysis (pp. 545). Kalyani, New Delhi, India, 1999.

  30. Smith, I. K., Vierheller, T. L., & Throne, C. A. (1998). Assay of glutathione reductase in crude tissue homogenates using 5, 50-dithiobis (2-nitro benzoic acid). Analytical Biochemistry, 175, 408–413.

    Article  Google Scholar 

  31. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  32. Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44, 276–287.

    Article  CAS  Google Scholar 

  33. Jebara, S., Jebara, M., Limam, F., & Aouani, M. E. (2005). Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress. Journal of Plant Physiology, 162, 929–936.

    Article  CAS  Google Scholar 

  34. Dua, R. P. (1992). Differential response of chickpea (Cicer arietinum L.) genotypes to salinity. The Journal of Agricultural Science, 119, 367–371.

    Article  Google Scholar 

  35. Soussi, M., Ocana, A., & Lluch, C. (1998). Effects of salt stress on growth, photosynthesis and nitrogen fixation in chick-pea (Cicer arietinum L.). Journal of Experimental Botany, 49, 1329–1337.

    Article  CAS  Google Scholar 

  36. Alscher, R. G., Erturk, N., & Heatrh, L. S. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 53, 1331–1341.

    Article  CAS  Google Scholar 

  37. Eyidogan, F., & Oz, M. T. (2005). Effect of salinity on antioxidant responses of chickpea seedlings. Acta Physiologiae Plantarum, 29, 485–493.

    Article  Google Scholar 

  38. Kukreja, S., Nandwal, A. S., Kumar, N., Sharma, S. K., Sharma, S. K., Unvi, V., & Sharma, P. K. (2005). Plant water status, H2O2 scavenging enzymes, ethylene evolution and membrane integrity of Cicer arietinum roots as affected by salinity. Biologia Plantarum, 49, 305–308.

    Article  CAS  Google Scholar 

  39. Verbruggen, N., & Herman, C. (2008). Proline accumulation in plants: a review. Amino Acids, 35, 753–759.

    Article  CAS  Google Scholar 

  40. Cuin, T. A., & Shabala, S. (2007). Compatible solutes reduce ROS-induced potassium efflux in Arabidopsis roots. Plant, Cell and Environment, 30, 875–885.

    Article  CAS  Google Scholar 

  41. Sivakumar, P., Sharmila, P., & Saradhi, P. P. (2000). Proline alleviates salt-stressed induced enhancement in ribulose-1, 5-bisphosphate oxygenase activity. Biochemical and Biophysical Research Communications, 279, 512–515.

    Article  CAS  Google Scholar 

  42. Yıldıztugay, E., Sekmen, A. H., Turkan, I., & Kucukoduk, M. (2011). Elucidation of physiological and biochemical mechanisms of an endemic halophyte Centaurea tuzgoluensis under salt stress. Plant Physiology and Biochemistry, 49, 816–824.

    Article  Google Scholar 

  43. Frechilla, S., Lasa, B., Ibarretre, L., Lamfus, C., & Aparico-Tejo, P. (2001). Pea response to saline stress is affected by the source of nitrogen nutrition (ammonium or nitrate). Plant Growth Regulation, 35, 171–179.

    Article  CAS  Google Scholar 

  44. Parida, A. K., & Das, A. B. (2004). Effects of NaCl stress on nitrogen and phosphorous metabolism in a true mangrove Bruguiera parviflora grown under hydroponic culture. Journal of Plant Physiology, 161, 921–928.

    Article  CAS  Google Scholar 

  45. Cakmak, I. (2005). The role of potassium in alleviating detrimental effects of abiotic stresses in plants. Journal of Plant Nutrition and Soil Science, 168, 521–530.

    Article  CAS  Google Scholar 

  46. Grattan, S. R., & Grieve, C. M. (1999). Salinity-mineral nutrient relations in horticultural crops. Scientia Horticulturae, 78, 127–157.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the University Grant Commission (New Delhi, India) and University of Delhi, India, for their financial assistance. VS is indebted to the Council of Scientific and Industrial Research New Delhi, India, for JRF-SRF. DK is grateful to DU-UGC for awarding UGC non-NET fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veena Agrawal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shankar, V., Kumar, D. & Agrawal, V. Assessment of Antioxidant Enzyme Activity and Mineral Nutrients in Response to NaCl Stress and its Amelioration Through Glutathione in Chickpea. Appl Biochem Biotechnol 178, 267–284 (2016). https://doi.org/10.1007/s12010-015-1870-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1870-1

Keywords

Navigation