Skip to main content
Log in

An Evaluation of Kinetic Models in the Biodesulfurization of Synthetic Oil by Rhodococcus erythropolis ATCC 4277

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biodesulfurization is an eco-friendly technology applied in the removal of sulfur from fossil fuels. This technology is based on the use of microorganisms as biocatalysts to convert the recalcitrant sulfur compounds into others easily treatable, as sulfides. Despite it has been studied during the last decades, there are some unsolved questions, as per example the kinetic model which appropriately describes the biodesulfurization globally. In this work, different kinetic models were tested to a batch desulfurization process using dibenzothiophene (DBT) as a model compound, n-dodecane as organic solvent, and Rhodococcus erythropolis ATCC 4277 as biocatalyst. The models were solved by ODE45 function in the MATLAB. Monod model was capable to describe the biodesulfurization process predicting all experimental data with a very good fitting. The coefficients of determination achieved to organic phase concentrations of 20, 80, and 100 % (v/v) were 0.988, 0.995, and 0.990, respectively. R. erythropolis ATCC 4277 presented a good affinity with the substrate (DBT) since the coefficients of saturation obtained to reaction medium containing 20, 80, and 100 % (v/v) were 0.034, 0.07, and 0.116, respectively. This kinetic evaluation provides an improvement in the development of biodesulfurization technology because it showed that a simple model is capable to describe the throughout process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Babich, I. V., & Moulijin, J. A. (2003). Science and technology of novel process for deep desulfurization of oil refinery streams: a review. Fuel, 82, 607–631.

    Article  CAS  Google Scholar 

  2. Oyama, S. T., Gott, T., Zhao, H., & Lee, Y. K. (2009). Transition metal phosphide hydroprocessing catalysts: a review. Catalysis Today, 143, 94–107.

    Article  CAS  Google Scholar 

  3. Stanislaus, A., Marafi, A., & Rana, M. S. (2010). Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catalysis Today, 153, 1–68.

    Article  CAS  Google Scholar 

  4. Boniek, D., Figueiredo, D., Santos, A. F. B., & Stoianoff, M. A. R. (2014). Biodesulfurization: a mini review about the immediate search for the future technology. Clean Technologies and Environmental Policy, 17, 29–37.

    Article  Google Scholar 

  5. Dinamarca, M. A., Rojas, A., Baeza, P., Espinoza, G., Ibacache-Quiroga, C., & Qjeda, J. (2014). Optimizing the biodesulfurization of gas oil by adding surfactants to immobilized cell systems. Fuel, 116, 237–241.

    Article  CAS  Google Scholar 

  6. Del Olmo, C. H., Alcon, A., Santos, V. E., & Garcia-Ochoa, F. (2005). Modeling the production of a Rhodococcus erythropolis IGTS8 biocatalyst for DBT biodesulfurization: influence of media composition. Enzyme Microbiology Technology, 37, 157–166.

    Article  Google Scholar 

  7. Del Olmo, C. H., Santos, V. E., Alcon, A., & Garcia-Ochoa, F. (2005). Production of a Rhodococcus erythropolis IGTS8 biocatalyst for DBT biodesulfurization: influence of operational conditions. Biochemical Engineering Journal, 22, 229–237.

    Article  Google Scholar 

  8. Le Borgne, S. L., & Quintero, R. (2003). Biotechnological process for the refining of petroleum. Fuel Processing Technology, 81, 155–169.

    Article  Google Scholar 

  9. Oldfield, C., Pogrebinsky, O., Simmonds, J., Olson, E. S., & Kulpa, C. F. (1997). Elucidation of the metabolic pathway for dibenzothiophene desulphurization by Rhodococcus sp. IGTS8 (ATCC 53968). Microbiology, 143, 2961–2973.

    Article  CAS  Google Scholar 

  10. Gupta, N., Roychoudhury, P. K., & Deb, J. K. (2005). Biotechnology of desulfurization of diesel: prospects and challenges. Applied Microbiology and Biotechnology, 66, 356–366.

    Article  CAS  Google Scholar 

  11. Kilbane, J. J., II. (2006). Microbial biocatalyst developments to upgrade fossil fuels. Energy Biotechnology, 17, 305–314.

    CAS  Google Scholar 

  12. Gray, K. A., Pogrebinsky, O. S., Mrachko, G. T., Xi, L., Monticello, D. J., & Squires, C. H. (1996). Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nature Biotechnology, 14, 1705–1709.

    Article  CAS  Google Scholar 

  13. Bachmann, R. T., Johnson, A. C., & Edyvean, R. G. J. (2014). Biotechnology in the petroleum industry: an overview. International Biodeterioration & Biodegradation, 86, 225–237.

    Article  CAS  Google Scholar 

  14. Monticello, D. J. (2000). Biodesulfurization and the upgrading of petroleum distillates. Biotechnolology, 11, 540–546.

    CAS  Google Scholar 

  15. Caro, A., Boltes, K., Letón, P., & García-Calvo, E. (2008). Description of by-product inhibition effects on biodesulfurization of dibenzothiophene in biphasic media. Biodegradable, 19, 599–611.

    Article  CAS  Google Scholar 

  16. Bhatia, S., & Sharma, D. K. (2010). Biodesulfurization of dibenzothiophene, its alkylated derivatives and crude oil by a newly isolated strain Pantoea agglomerans D23W3. Biochemical Engineering Journal, 50, 104–109.

    Article  CAS  Google Scholar 

  17. Calzada, J., Alcon, A., Santos, V. E., & Garcia-Ochoa, F. (2012). Extended kinetic model for DBT desulfurization using Pseudomonas Putida CECT5279 in resting cells. Biochemical Engineering Journal, 66, 52–60.

    Article  CAS  Google Scholar 

  18. Alcon, A., Martin, A. B., Santos, V. E., Gomez, E., & Garcia-Ochoa, F. (2008). Kinetic model for DBT desulphurization by resting whole cells of Pseudomonas putida CECT5279. Biochemical Engineering Journal, 39, 486–495.

    Article  CAS  Google Scholar 

  19. Galán, B., Díaz, E., & García, J. L. (2000). Enhancing desulphurization by engineering a flavin reductase-encoding gene cassette in recombinant biocatalysts. Environmental Microbiology, 2, 687–694.

    Article  Google Scholar 

  20. Martin, A. B., Alcon, A., Santos, V. E., & Garcia-Ochoa, F. (2004). Production of a biocatalyst of Pseudomonas putida CECT5279 for dibenzothiophene (DBT) biodesulfurization for different media compositions. Energy Fuel, 18, 851–857.

    Article  CAS  Google Scholar 

  21. Martin, A. B., Alcon, A., Santos, V. E., & Garcia-Ochoa, F. (2005). Production of a biocatalyst of Pseudomonas putida CECT5279 for DBT biodesulfurization: influence of the operational conditions. Energy Fuel, 19, 775–782.

    Article  CAS  Google Scholar 

  22. Kobayashi, M., Horiuchi, K., Yoshikama, O., Hirasawa, K., Ishii, Y., Fujino, K., Sugiyama, H., & Maruhashi, K. (2001). Kinetic analysis of microbial desulfurization of model and light gas oils containing multiple alkyl dibenzothiophenes. Bioscience, Biotechnology, and Biochemistry, 65, 298–304.

    Article  CAS  Google Scholar 

  23. Luo, M. F., Xing, J. M., Gou, Z. X., Li, S., Liu, H. Z., & Chen, J. Y. (2003). Desulfurization of dibenzothiophene by lyophilized of Pseudomonas delafieldii R-8 in the presence of dodecane. Biochemical Engineering Journal, 13, 1–6.

    Article  CAS  Google Scholar 

  24. Rashtchi, M., Mohebali, G. H., Akbarnejad, M. M., Towfighi, J., Rasekh, B., & Keytash, A. (2006). Analysis of biodesulfurization of model oil system by the bacterium, strain RIPI-22. Biochemical Engineering Journal, 29, 169–173.

    Article  CAS  Google Scholar 

  25. Folsom, B. R., Schieche, D. R., Digrazia, P. M., Werner, J., & Palmer, S. (1999). Microbial desulfurization of alkylated dibenzothiophenes from a hydrodesulfurized middle distillate by Rhodococcus erythropolis I-19. Applied Environmental Microbiology, 65, 4967–4972.

    CAS  Google Scholar 

  26. Irani, Z. A., Yasdian, F., Mohebali, G., Soheili, M., & Mehrnia, M. R. (2011). Determination of growth kinetic parameters of a desulfurizing bacterium, Gordonia alkanivorans RIPI90A. Chemical Engineering Transactions, 24, 937–942.

    Google Scholar 

  27. Elmer, L., & Gaden, J. (2000). Fermentation process kinetics. Journal of Biochemistry Microbiology Technical Engineering, 1, 413–429.

    Google Scholar 

  28. Monod, J. (1949). The growth of bacterial cultures. Annual Review of Microbiology, 3, 371–394.

    Article  CAS  Google Scholar 

  29. Abuhamed, T., Bayraktar, E., Mehmetoglu, T., & Mehmetoglu, Ü. (2004). Kinetics model for growth of Pseudomonas putida F1 during benzene, toluene and phenol biodegradation. Process Biochemistry, 39, 983–988.

    Article  CAS  Google Scholar 

  30. Datta, A., Philip, L., & Bhallamudi, S. M. (2014). Modeling the biodegradation kinetics of aromatic and aliphatic volatile pollutant mixture in liquid phase. Chemical Engineering Journal, 241, 288–300.

    Article  CAS  Google Scholar 

  31. Maass, D., Oliveira, D., Souza, A. A. U., & Souza, S. M. A. G. (2014). Biodesulfurization of a system containing synthetic fuel using Rhodococcus erythropolis ATCC 4277. Applied Biochemistry and Biotechnology, 174, 2079–2085.

    Article  CAS  Google Scholar 

  32. Tamerler, C., Ülgen, K., Kirdar, B., & Önsan, Z. I. (2001). A structured model for intracellular Eco RI endonuclease production by recombinant E. coli 294. Process Biochemistry, 36, 621–627.

    Article  CAS  Google Scholar 

  33. Guchhait, S., Biswas, D., Bhattacharya, P., & Chowdhury, R. (2005). Bio-desulfurization of model organo-sulfur compounds and hydrotreated diesel—experiments and modeling. Chemical Engineering Journal, 112, 145–151.

    Article  CAS  Google Scholar 

  34. Carvalho, C. C. C., & Fonseca, M. M. R. (2004). Solvent toxicity in organic-aqueous systems analysed by multivariate analysis. Bioprocess and Biosystems Engineering, 26, 361–375.

    Article  CAS  Google Scholar 

  35. Carvalho, C. C. C., Parreño-Marchante, B., Neumann, G., Fonseca, M. M. R., & Heipieper, H. J. (2005). Adaptation of Rhodococcus erythropolis DCL14 to growth on n-alkanes, alcohols and terpenes. Applied Microbiology and Biotechnology, 67, 383–388.

    Article  CAS  Google Scholar 

  36. Carvalho, C. C. C., Poretti, A., & Fonseca, M. M. R. (2005). Cell adaptation to solvent, substrate and product: a successful strategy to overcome product inhibition in a bioconversion system. Applied Microbiology and Biotechnology, 69, 268–275.

    Article  CAS  Google Scholar 

  37. Carvalho, C. C. C., Wick, L. Y., & Heipieper, H. J. (2009). Cell wall adaptations of planktonic and biofilm Rhodococcus erythropolis cells to growth on C5 to C16 n-alkane hydrocarbons. Applied Microbiology and Biotechnology, 82, 311–320.

    Article  CAS  Google Scholar 

  38. Trigueros, D. E. G., Módenes, A. N., Kroumov, A. D., & Espinoza-Quiñones, F. R. (2010). Modeling of biodegradation process of BTEX compounds: kinetic parameters estimation by using Particle Swarm Global Optimizer. Process Biochemistry, 45, 1355–1361.

    Article  CAS  Google Scholar 

  39. Cheng, Y. C., & Prusoff, W. H. (1973). Relationship between the inhibition constant (K I ) and the concentration of inhibitor which causes 50 per cent inhibition (I 50 ) of an enzymatic reaction. Biochemical Pharmacology, 22, 3099–3108.

    Article  CAS  Google Scholar 

  40. Sponza, D. T., & Isik, M. (2004). Decolorization and inhibition kinetic of Direct Black 38 azo dye with granulated anaerobic sludge. Enzyme Microbiology Technology, 34, 147–158.

    Article  CAS  Google Scholar 

  41. Bungay, H. R. (1994). Growth rate expressions for two substrates one of which is inhibitory. Journal of Biotechnology, 34, 97–100.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Brazilian Petroleum Agency—ANP, through PRH-09/MECPETRO, and CNPq for the financial support and scholarships. The authors are also thankful to LABSIN—Laboratory of Numerical Simulation of Chemical Systems, by computational infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ulson de Souza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maass, D., Mayer, D.A., Moritz, D.E. et al. An Evaluation of Kinetic Models in the Biodesulfurization of Synthetic Oil by Rhodococcus erythropolis ATCC 4277. Appl Biochem Biotechnol 177, 759–770 (2015). https://doi.org/10.1007/s12010-015-1764-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1764-2

Keywords

Navigation