Skip to main content
Log in

The Structure and Enzyme Characteristics of a Recombinant Leucine Aminopeptidase rLap1 from Aspergillus sojae and Its Application in Debittering

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A leucine aminopeptidase Lap1 was cloned from Aspergillus sojae GIM3.30. The truncated Lap1 without a signal peptide was over-expressed in P. pastoris, and the enzymatic characteristics of recombinant Lap1 (rLap1) were tested. The rLap1 was about 36.7 kDa with an optimal pH 8.0 and optimal temperature 50 °C for substrate Leu-p-nitroanilide and it sustained 50 % activity after 1 h incubation at 50 °C. The activity of rLap1 was significantly inhibited by EDTA, whereas Co2+, Mn2+, and Ca2+ ions, but not Zn2+ ions, restored its activity. rLap1 showed the highest activity against Arg-pNA and then Leu-, Lys-, Met-, and Phe-pNA. The 3D structure of rLap1 showed it had a conserved functional charge/dipole complex and a hydrogen bond network of Zn2-D179-S228-Q177-D229-S158 around its active center. An acidic Asp residue was found at the bottom of the substrate binding pocket, which explains its preference for basic N-terminal amino acid substrates such as Arg and Lys. rLap1 improved the degree of hydrolysis of casein and soy protein hydrolysates and also decreased their bitterness, indicating its potential utility in food production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hersh, L. B., Aboukhair, N., & Watson, S. (1987). Immunohistochemical localization of aminopeptidase M in rat brain and periphery: relationship of enzyme localization and enkephalin metabolism. Peptides, 8, 523–532.

    Article  CAS  Google Scholar 

  2. Park, H., Shim, J. S., Kim, B. S., Jung, H. J., Huh, T.-L., & Kwon, H. J. (2014). Purpurin inhibits adipocyte-derived leucine aminopeptidase and angiogenesis in a zebrafish model. Biochemical and Biophysical Research Communications, 450, 561–567.

    Article  CAS  Google Scholar 

  3. Gonzales, T., & Robert-Baudouy, J. (1996). Bacterial aminopeptidases: properties and functions. FEMS Microbiology Reviews, 18, 319–344.

    Article  CAS  Google Scholar 

  4. Xi, H., Tian, Y., Zhou, N., Zhou, Z., & Wei, S. (2014). Characterization of an N -glycosylated Bacillus subtilis leucine aminopeptidase expressed in Pichia pastoris. Journal of Basic Microbiology, 55, 236–246.

    Article  Google Scholar 

  5. Kusumoto, K. I., Matsushita-Morita, M., Furukawa, I., Suzuki, S., Yamagata, Y., Koide, Y., Ishida, H., Takeuchi, M., & Kashiwagi, Y. (2008). Efficient production and partial characterization of aspartyl aminopeptidase from Aspergillus oryzae. Journal of Applied Microbiology, 105, 1711–1719.

    Article  CAS  Google Scholar 

  6. Ramírez-Zavala, B., Mercado-Flores, Y., Hernández-Rodríguez, C., & Villa-Tanaca, L. (2004). Purification and characterization of a lysine aminopeptidase from Kluyveromyces marxianus. FEMS Microbiology Letters, 235, 369–375.

    Article  Google Scholar 

  7. Rawlings, N. D., Barrett, A. J., & Bateman, A. (2012). MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Research, 40, D343–D350.

    Article  CAS  Google Scholar 

  8. Duprez, K., Scranton, M. A., Walling, L. L., & Fan, L. (2014). Structure of tomato wound-induced leucine aminopeptidase sheds light on substrate specificity. Acta Crystallographica, 70, 1649–1658.

    CAS  Google Scholar 

  9. Matsui, M., Fowler, J. H., & Walling, L. L. (2006). Leucine aminopeptidases: diversity in structure and function. Biological Chemistry, 387, 1535–1544.

    Article  CAS  Google Scholar 

  10. Stressler, T., Eisele, T., Schlayer, M., Lutz-Wahl, S. and Fischer, L. (2013). Characterization of the recombinant exopeptidases pepx and pepn from Lactobacillus helveticus ATCC 12046 important for food protein hydrolysis. Plos One, 8, −.

  11. Nampoothiri, K. M., Nagy, V., Kovacs, K., Szakacs, G., & Pandey, A. (2005). L-leucine aminopeptidase production by filamentous Aspergillus fungi. Letters in Applied Microbiology, 41, 498–504.

    Article  CAS  Google Scholar 

  12. Lin, L.-L., Hsu, W.-H., Wu, C.-P., Chi, M.-C., Chou, W.-M., & Hu, H.-Y. (2004). A thermostable leucine aminopeptidase from Bacillus kaustophilus CCRC 11223. Extremophiles, 8, 79–87.

    Article  CAS  Google Scholar 

  13. Shen, Y., Wang, F., Lan, D., Liu, Y., Yang, B., & Wang, Y. (2011). Biochemical properties and potential applications of recombinant leucine aminopeptidase from Bacillus kaustophilus CCRC 11223. International Journal of Molecular Sciences, 12, 7609–7625.

    Article  CAS  Google Scholar 

  14. Rahulan, R., Dhar, K., Nampoothiri, K., & Pandey, A. (2012). Aminopeptidase from Streptomyces gedanensis as a useful tool for protein hydrolysate preparations with improved functional properties. Journal of Food Science, 77, C791.

    Article  CAS  Google Scholar 

  15. Nakadai, T., Nasuno, S., & IGUCHI, N. (1973). Purification and properties of leucine aminopeptidase I from Aspergillus oryzae. Agricultural and Biological Chemistry, 37, 757–765.

    Article  CAS  Google Scholar 

  16. NAKADAI, T., & NASUNO, S. (1977). Purification and properties of leucine aminopeptidase IV from Aspergillus oryzae. Agricultural and Biological Chemistry, 41, 1657–1666.

    Article  CAS  Google Scholar 

  17. Chien, H. C. R., Lin, L. L., Chao, S. H., Chen, C. C., Wang, W. C., Shaw, C. Y., Tsai, Y. C., Hu, H. Y., & Hsu, W. H. (2002). Purification, characterization, and genetic analysis of a leucine aminopeptidase from Aspergillus sojae. Biochimica et Biophysica Acta, 1576, 119–126.

    Article  CAS  Google Scholar 

  18. Machida, M., Asai, K., Sano, M., Tanaka, T., Kumagai, T., Terai, G., Kusumoto, K., Arima, T., & Akita, O. (2005). Genome sequencing and analysis of Aspergillus oryzae. Nature, 438, 1157–1161.

    Article  Google Scholar 

  19. Sato, A., Oshima, K., Noguchi, H., Ogawa, M., Takahashi, T., Oguma, T., Koyama, Y., Itoh, T., Hattori, M., & Hanya, Y. (2011). Draft genome sequencing and comparative analysis of Aspergillus sojae NBRC4239. DNA Research, 18, 165–176.

    Article  CAS  Google Scholar 

  20. Matsushita-Morita, M., Tada, S., Suzuki, S., Hattori, R., Marui, J., Furukawa, I., Yamagata, Y., Amano, H., Ishida, H., Takeuchi, M., Kashiwagi, Y., & Kusumoto, K.-I. (2011). Overexpression and characterization of an extracellular leucine aminopeptidase from Aspergillus oryzae. Current Microbiology, 62, 557–564.

    Article  CAS  Google Scholar 

  21. Gotou, T., Shinoda, T., Mizuno, S., & Yamamoto, N. (2009). Purification and identification of proteolytic enzymes from Aspergillus oryzae capable of producing the antihypertensive peptide Ile-Pro-Pro. Journal of Bioscience and Bioengineering, 107, 615.

    Article  CAS  Google Scholar 

  22. Chevrier, B., D’orchymont, H., Schalk, C., Tarnus, C., & Moras, D. (1996). The structure of the Aeromonas proteolytica aminopeptidase complexed with a hydroxamate inhibitor. European Journal of Biochemistry, 237, 393–398.

    Article  CAS  Google Scholar 

  23. Hanaya, K., Suetsugu, M., Saijo, S., Yamato, I., & Aoki, S. (2012). Potent inhibition of dinuclear zinc (II) peptidase, an aminopeptidase from Aeromonas proteolytica, by 8-quinolinol derivatives: inhibitor design based on Zn2+ fluorophores, kinetic, and X-ray crystallographic study. JBIC, Journal of Biological Inorganic Chemistry, 17, 517–529.

    Article  CAS  Google Scholar 

  24. Fundoiano-Hershcovitz, Y., Rabinovitch, L., Langut, Y., Reiland, V., Shoham, G., & Shoham, Y. (2004). Identification of the catalytic residues in the double-zinc aminopeptidase from Streptomyces griseus. FEBS Letters, 571, 192–196.

    Article  CAS  Google Scholar 

  25. Juárez-Montiel, M., Ibarra, J. A., Chávez-Camarillo, G., Hernández-Rodríguez, C., & Villa-Tanaca, L. (2014). Molecular cloning and heterologous expression in Pichia pastoris of x-prolyl-dipeptidyl aminopeptidase from basidiomycete Ustilago maydis. Applied Biochemistry and Biotechnology, 172, 2530–2539.

    Article  Google Scholar 

  26. Tan, P., & Konings, W. (1990). Purification and characterization of an aminopeptidase from Lactococcus lactis subsp. cremoris Wg2. Applied and Environmental Microbiology, 56, 526–532.

    CAS  Google Scholar 

  27. Karadzic, I., Izrael, L., Gojgic-Cvijovic, G., & Vujcic, Z. (2002). Leucine aminopeptidase from Streptomyces hygroscopicus is controlled by a low molecular weight inhibitor. Journal of Bioscience and Bioengineering, 94, 309.

    Article  CAS  Google Scholar 

  28. Ke, Y., Huang, W.-Q., Li, J.-Z., Xie, M.-Q. and Luo, X.-C. (2012). Enzymatic characteristics of a recombinant neutral protease I (rNpI) from Aspergillus oryzae expressed in Pichia pastoris. Journal of Agricultural and Food Chemistry, 60, 12164–12169.

    Article  CAS  Google Scholar 

  29. Damle, M., Harikumar, P., & Jamdar, S. (2010). Debittering of protein hydrolysates using immobilized chicken intestinal mucosa. Process Biochemistry, 45, 1030–1035.

    Article  CAS  Google Scholar 

  30. Desmarais, W., Bienvenue, D. L., Bzymek, K. P., Petsko, G. A., Ringe, D., & Holz, R. C. (2006). The high-resolution structures of the neutral and the low pH crystals of aminopeptidase from Aeromonas proteolytica. JBIC, Journal of Biological Inorganic Chemistry, 11, 398–408.

    Article  CAS  Google Scholar 

  31. Overington JP, Zhu, ZY., Sali A, Johnson MS, Sowdhamini R, Louie GV, Blundell TL, (1993). Molecular recognition in protein families: a database of aligned three-dimensional structures of related proteins. Biochemical Society Transactions, 3, 597-604.

    Article  Google Scholar 

  32. MacKerell, A. D., Brooks, B., Brooks, C. L., Nilsson, L., Roux, B., Won, Y. and Karplus, M. (2002), in Encyclopedia of Computational Chemistry, John Wiley & Sons, Ltd.

  33. Bzymek, K. P., Moulin, A., Swierczek, S. I., Ringe, D., Petsko, G. A., Bennett, B., & Holz, R. C. (2005). Kinetic, spectroscopic, and X-ray crystallographic characterization of the functional E151H aminopeptidase from Aeromonas proteolytica. Biochemistry, 44, 12030–12040.

    Article  CAS  Google Scholar 

  34. Ataie, N., Hoang, Q., Zahniser, M., Tu, Y., Milne, A., Petsko, G., & Ringe, D. (2008). Zinc coordination geometry and ligand binding affinity: the structural and kinetic analysis of the second-shell serine 228 residue and the methionine 180 residue of the aminopeptidase from Vibrio proteolyticus. Biochemistry, 47, 7673–7683.

    Article  CAS  Google Scholar 

  35. Wagner, F. W., Wilkes, S. H., & Prescott, J. M. (1972). Specificity of Aeromonas aminopeptidase toward amino acid amides and dipeptides. Journal of Biological Chemistry, 247, 1208–1210.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Guangdong Province of China Science and Technology Projects (Project No. 2012B020311003, No. 2013B010404003, No. 2014A010107005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Chun Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, WQ., Zhong, LF., Meng, ZZ. et al. The Structure and Enzyme Characteristics of a Recombinant Leucine Aminopeptidase rLap1 from Aspergillus sojae and Its Application in Debittering. Appl Biochem Biotechnol 177, 190–206 (2015). https://doi.org/10.1007/s12010-015-1737-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1737-5

Keywords

Navigation