Skip to main content
Log in

Potent inhibition of dinuclear zinc(II) peptidase, an aminopeptidase from Aeromonas proteolytica, by 8-quinolinol derivatives: inhibitor design based on Zn2+ fluorophores, kinetic, and X-ray crystallographic study

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The selective inhibition of an aminopeptidase from Aeromonas proteolytica (AAP), a dinuclear Zn2+ hydrolase, by 8-quinolinol (8-hydroxyquinoline, 8-HQ) derivatives is reported. We previously reported on the preparation of 8-HQ-pendant cyclens as Zn2+ fluorophores (cyclen is 1,4,7,10-tetraazacyclododecane), in which the nitrogen and phenolate of the 8-HQ units (as well as the four nitrogens of cyclen) bind to Zn2+ in a bidentate manner to form very stable Zn2+ complexes at neutral pH (K d = 8–50 fM at pH 7.4). On the basis of this finding, it was hypothesized that 8-HQ derivatives have the potential to function as specific inhibitors of Zn2+ enzymes, especially dinuclear Zn2+ hydrolases. Assays of 8-HQ derivatives as inhibitors were performed against commercially available dinuclear Zn2+ enzymes such as AAP and alkaline phosphatase. 8-HQ and the 5-substituted 8-HQ derivatives were found to be competitive inhibitors of AAP with inhibition constants of 0.16–29 μM at pH 8.0. The nitrogen at the 1-position and the hydroxide at the 8-position of 8-HQ were found to be essential for the inhibition of AAP. Fluorescence titrations of these drugs with AAP and an X-ray crystal structure analysis of an AAP–8-HQ complex (1.3-Å resolution) confirmed that 8-HQ binds to AAP in the “Pyr-out” mode, in which the hydroxide anion of 8-HQ bridges two Zn2+ ions (Zn1 and Zn2) in the active site of AAP and the nitrogen atom of 8-HQ coordinates to Zn1 (Protein Data Bank code 3VH9).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. We conducted a potentiometric pH titration of a mixture of 11 and Zn2+–cyclen in aqueous solution with I = 0.1 (NaNO3) at 25 °C to check the complexation of 11 with Zn2+–cyclen. Analysis of the potentiometric pH titration curves suggested little interaction between them at micromolar order concentrations.

References

  1. Auld DA (2001) In: Bertini I, Sigenl A, Sigel H (eds) Handbook of metalloprotein. Marcel Dekker, New York, pp 881–959

    Google Scholar 

  2. Anzellotti AL, Farrell NP (2008) Chem Soc Rev 37:1629–1651

    Article  CAS  PubMed  Google Scholar 

  3. Aoki S, Kimura E (2004) In: Que L Jr, Tolman WB (eds) Comprehensive coordination chemistry II. Elsevier, Amsterdam, pp 601–640

    Chapter  Google Scholar 

  4. Lipscomb WN, Sträter N (1996) Chem Rev 96:2375–2433

    Article  CAS  PubMed  Google Scholar 

  5. Supuran CT, Winum JY (2009) Drug design of zinc–enzyme inhibitors. Wiley, New York

    Book  Google Scholar 

  6. Holz RC (2002) Coord Chem Rev 232:5–26

    Article  CAS  Google Scholar 

  7. Jacobsen JA, Jourden JLM, Miller MT, Cohen SM (2010) Biochim Biophys Acta 1803:72–94

    Article  CAS  PubMed  Google Scholar 

  8. Mucha A, Drag M, Dalton JP, Kafarski P (2010) Biochimie 92:1509–1529

    Article  CAS  PubMed  Google Scholar 

  9. Tekeste T, Vahrenkamp H (2007) Inorg Chim Acta 360:1523–1528

    Article  CAS  Google Scholar 

  10. Supuran CT, Scozzafava A (2007) Bioorg Med Chem 15:4336–4350

    Article  CAS  PubMed  Google Scholar 

  11. Miller TA, Witter DJ, Belvedere S (2003) J Med Chem 46:5097–5116

    Article  CAS  PubMed  Google Scholar 

  12. Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, Breslow R, Pavletich NP (1999) Nature 401:188–193

    Article  CAS  PubMed  Google Scholar 

  13. Haggarty SJ, Koeller KM, Wong JC, Grozinger CM, Schreiber SL (2003) Proc Natl Acad Sci USA 100:4389–4394

    Article  CAS  PubMed  Google Scholar 

  14. Yoshida M, Kijima M, Akita M, Beppu T (1990) J Biol Chem 265:17174–17179

    CAS  PubMed  Google Scholar 

  15. Suzuki T (2009) Chem Pharm Bull 57:897–906

    Article  CAS  PubMed  Google Scholar 

  16. Itoh Y, Suzuki T, Kouketsu A, Suzuki N, Maeda S, Yoshida M, Nakagawa H, Miyata N (2007) J Med Chem 50:5425–5438

    Article  CAS  PubMed  Google Scholar 

  17. Suzuki T, Nagano Y, Kouketsu A, Matsuura A, Maruyama S, Kurotaki M, Nakagawa H, Miyata N (2005) J Med Chem 48:1019–1032

    Article  CAS  PubMed  Google Scholar 

  18. Gupta SP (2007) Chem Rev 107:3042–3087

    Article  CAS  PubMed  Google Scholar 

  19. Strater N, Lipscomb WN (1995) Biochemistry 34:9200–9210

    Article  CAS  PubMed  Google Scholar 

  20. Stamper CC, Bennett B, Edwards T, Holz RC, Ringe D, Petsko G (2001) Biochemistry 40:7035–7046

    Article  CAS  PubMed  Google Scholar 

  21. De Paola CC, Bennett B, Holz RC, Ringe D, Petsko GA (1999) Biochemistry 38:9048–9053

    Article  PubMed  Google Scholar 

  22. Rouffet M, Oliveira CAF, Udi Y, Agrawal A, Sagi I, McCammon JA, Cohen SM (2010) J Am Chem Soc 132:8232–8233

    Article  CAS  PubMed  Google Scholar 

  23. Albrecht S, Defoin A, Salomon E, Tarnus C, Watterholm A, Haeggström JZ (2006) Bioorg Med Chem 14:7241–7257

    Article  CAS  PubMed  Google Scholar 

  24. Bush K, Macielag MJ (2010) Expert Opin Ther Pat 20:1277–1293

    Article  CAS  PubMed  Google Scholar 

  25. Matsui M, Fowler JH, Walling LL (2006) Biol Chem 387:1535–1544

    Article  CAS  PubMed  Google Scholar 

  26. Kimura E, Aoki S (2001) Biometals 14:191–204

    Article  CAS  PubMed  Google Scholar 

  27. Koike T, Watanabe T, Aoki S, Kimura E, Shiro M (1996) J Am Chem Soc 118:12696–12703

    Article  CAS  Google Scholar 

  28. Aoki S, Sakurama K, Matsuo N, Yamada Y, Takasawa R, Tanuma S, Shiro M, Takeda K, Kimura E (2006) Chem Eur J 12:9066–9080

    Article  CAS  PubMed  Google Scholar 

  29. Ohshima R, Kitamura M, Morita A, Shiro M, Yamada Y, Ikekita M, Kimura E, Aoki S (2010) Inorg Chem 49:888–899

    Article  CAS  PubMed  Google Scholar 

  30. Martell AE, Smith RM (1974) Critical stability constants, vol 2. Plenum Press, New York, pp 223–237

  31. Gilbert AM, Bursavich MG, Lombardi S, Georgiadis KE, Reifenberg E, Flannery CR, Morris EA (2008) Bioorg Med Chem Lett 18:6454–6457

    Article  CAS  PubMed  Google Scholar 

  32. Jacobsen JA, Fullagar JL, Miller MT, Cohen SM (2011) J Med Chem 54:591–602

    Article  CAS  PubMed  Google Scholar 

  33. Altmeyer MA, Marschner A, Schiffmann R, Klein CD (2010) Bioorg Med Chem Lett 20:4038–4044

    Article  CAS  PubMed  Google Scholar 

  34. Moon H, Han S, Park H, Choe J (2010) Mol Cells 29:471–474

    Article  CAS  PubMed  Google Scholar 

  35. King ONF, Li XS, Sakurai M, Kawamura A, Rose NR, Ng SS, Quinn AM, Rai G, Mott BT, Beswick P, Klose RJ, Oppermann U, Jadhav A, Heightman TD, Maloney DJ, Schofield CJ, Simeonov A (2010) PloS One 5:e15535

    Article  PubMed  Google Scholar 

  36. Innocenti A, Vullo D, Scozzafava A, Supuran CT (2008) Bioorg Med Chem Lett 18:1583–1587

    Article  CAS  PubMed  Google Scholar 

  37. Sapochak LS, Benincasa FE, Schofield RS, Baker JL, Ricco KKC, Fogarty D, Kohlmann H, Ferris KF, Burrows PE (2002) J Am Chem Soc 124:6119–6125

    Article  CAS  PubMed  Google Scholar 

  38. Zhang J, Xiong RG, Chen ZF, You XZ, Lee GH, Peng SM (2001) Chem Lett 30:676–677

    Article  Google Scholar 

  39. García-Santos I, Sanmartín J, García-Deibe AM, Fondo M, Gómez E (2010) Inorg Chim Acta 363:193–198

    Article  Google Scholar 

  40. Koike T, Kimura E (1991) J Am Chem Soc 113:8935–8941

    Article  CAS  Google Scholar 

  41. Ustynyuk L, Bennett B, Edwards T, Holz RC (1999) Biochemistry 38:11433–11439

    Article  CAS  PubMed  Google Scholar 

  42. Wang H, Li Y, Sun F, Feng Y, Jin K, Wang X (2008) J Org Chem 73:8639–8642

    Article  CAS  PubMed  Google Scholar 

  43. Wilkes SH, Prescott JM (1985) J Biol Chem 260:13154–13162

    CAS  PubMed  Google Scholar 

  44. Wu G, Robertson DH, Brooks CL III, Vieth M (2003) J Comput Chem 24:1549–1562

    Article  CAS  PubMed  Google Scholar 

  45. Desmarais WT, Bienvenue DL, Bzymek KP, Petsko GA, Ringe D, Holz RC (2006) J Biol Inorg Chem 11:398–408

    Article  CAS  PubMed  Google Scholar 

  46. Desmarais WT, Bienvenue DL, Bzymek KP, Holz RC, Petsko GA, Ringe D (2002) Structure 10:1063–1072

    Article  CAS  PubMed  Google Scholar 

  47. Carugo O, Pongor S (2001) Protein Sci 10:1470–1473

    Article  CAS  PubMed  Google Scholar 

  48. Chevrier B, Schalk C, D’Orchymont H, Rondeau JM, Moras D, Tarnus C (1994) Structure 2:283–291

    Article  CAS  PubMed  Google Scholar 

  49. Stamper CC, Bienvenue DL, Bennett B, Ringe D, Petsko GA, Holz RC (2004) Biochemistry 43:9620–9628

    Article  CAS  PubMed  Google Scholar 

  50. Chevrier B, D’Orchymont H, Schalk C, Tarnus C, Moras D (1996) Eur J Biochem 237:393–398

    Article  CAS  PubMed  Google Scholar 

  51. Arbiser JL, Kraeft SK, van Leeuwen R, Hurwitz SJ, Selig M, Dickersin GR, Flint A, Byers HR, Chen LB (1984) Mol Med 4:665–670

    Google Scholar 

  52. Mazumder UK, Gupta M, Bhattacharya S, Karki SS, Rathinasamy S, Thangavel SJ (2004) Enzyme Inhib Med Chem 19:185–192

    Article  CAS  Google Scholar 

  53. Babudri F, Cardone A, Cioffi CT, Farinola GM, Naso F, Ragni R (2006) Synthesis 8:1325–1332

    Article  Google Scholar 

  54. Hartrrig OH, Herbert S (1979) Monatsh Chem 110:279–287

    Article  Google Scholar 

  55. Herron N, Wang Y (2010) US Patent 7,230,107

  56. Gershon H, Mcwell MW (1972) J Heterocycl Chem 9:659–667

    Article  CAS  Google Scholar 

  57. Lee HS, Spraggon G, Schultz PG, Wang F (2009) J Am Chem Soc 131:2481–2483

    Article  CAS  PubMed  Google Scholar 

  58. Pu YJ, Miyamoto M, Nakayama K, Oyama T, Masaaki Y, Kido J (2009) Org Electron 10:228–232

    Article  CAS  Google Scholar 

  59. Ueno G, Hirose R, Ida K, Kumasaka T, Yamamoto M (2004) J Appl Crystallogr 37:867–873

    Article  CAS  Google Scholar 

  60. Sugahara M, Kunishima N (2006) Acta Crystallogr D Biol Crystallogr 62:520–526

    Article  PubMed  Google Scholar 

  61. Otwinowski Z, Minor W (1997) In: Carter Jr CW, Sweet RM (eds) Macromol Crystallogr A, vol 276. Academic Press, New York, pp 307–326

  62. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) J Appl Crystallogr 40:658–674

    Article  CAS  PubMed  Google Scholar 

  63. Emsley P, Cowtan K (2004) Acta Crystallogr D Biol Crystallogr 60:2126–2132

    Article  PubMed  Google Scholar 

  64. Murshudov GN, Vagin AA, Lebedev A, Wilson KS, Dodson EJ (1999) Acta Crystallogr D Biol Crystallogr 55:247–255

    Article  CAS  PubMed  Google Scholar 

  65. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) Acta Crystallogr D Biol Crystallogr 66:213–221

    Article  PubMed  Google Scholar 

  66. Lovell S, Davis I, Arendall W III, de Bakker P, Word J, Prisant M, Richardson J, Richardson D (2003) Proteins 50:437–450

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-Aid from the Ministry of Education, Science and Culture in Japan (nos. 19659026, 22390005, and 22659005 for S.A.) and the Academic Frontier project for private universities: matching fund subsidy from MEXT, 2009–2013. We thank Kouya Kobayashi and Yuki Mizuseda for synthesis of some inhibitors and enzyme inhibition assays. The high-performance computing resource was provided by Tokyo University of Science. The synchrotron radiation experiments were performed at BL26B2 at SPring-8 with the approval of RIKEN (proposal no. 20110094) and at BL5A at Photon Factory with the approval of the Photon Factory Program Advisory Committee (proposal no. 2009G660). We thank Masaki Yamamoto and Go Ueno for helpful advice and the coordination of the synchrotron radiation experiments, and we gratefully acknowledge the support of the beamline staff. The high performance computing resource was provided by Tokyo University of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin Aoki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 784 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanaya, K., Suetsugu, M., Saijo, S. et al. Potent inhibition of dinuclear zinc(II) peptidase, an aminopeptidase from Aeromonas proteolytica, by 8-quinolinol derivatives: inhibitor design based on Zn2+ fluorophores, kinetic, and X-ray crystallographic study. J Biol Inorg Chem 17, 517–529 (2012). https://doi.org/10.1007/s00775-012-0873-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-012-0873-4

Keywords

Navigation