Skip to main content
Log in

Protein-Coated Microcrystals from Candida rugosa Lipase: Its Immobilization, Characterization, and Application in Resolution of Racemic Ibuprofen

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, an economical heterogeneous biocatalyst, protein-coated microcrystals (PCMCs), was prepared from a commercial Candida rugosa lipase (CRL) and used for catalyzing esterification of (R, S)-ibuprofen enantiomers with isooctanol in isooctane. The main variables controlling the process (precipitating solvents, pH, saturated K2SO4 solution, and water content) were optimized via single-factorial experiments. Under optimum conditions, the enantiomeric excess of active S(+)-ibuprofen and total conversion rate were 97.34 and 49.83 %, respectively, and the corresponding enzyme (PCMC-CRL) activity attained 387.29 μmol/min/g protein, a 5.78-fold enhancement over the free lipase powder. Additionally, the thermostability, organic-solvent tolerance, and operational stability of PCMC-CRL were greatly improved as compared to the free enzyme. Fourier transform infrared (FTIR) spectroscopy was employed to reveal the correlation between conformation and enzyme activity enhancement. Moreover, the PCMC-CRL retained most of its original activity following use in more than 15 successive batches, suggesting that it exhibits adequate operational stability. These results indicate that PCMC-CRL is of great potential use in industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schmid, R. D., & Verger, R. (1998). Lipases: interfacial enzymes with attractive applications. Angewandte Chemie International Edition, 37(12), 1608–1633.

    Article  Google Scholar 

  2. Singh, A. K., & Mukhopadhyay, M. (2012). Overview of fungal lipase: a review. Applied Biochemistry and Biotechnology, 166(2), 486–520.

    Article  CAS  Google Scholar 

  3. Xie, Y. C., Liu, H. Z., & Chen, J. Y. (1998). Candida rugosa lipase catalyzed esterification of racemic ibuprofen with butanol: racemization of R-ibuprofen and chemical hydrolysis of S-ester formed. Biotechnology Letters, 20(5), 455–458.

    Article  CAS  Google Scholar 

  4. Contesini, F. J., & de Oliveira Carvalho, P. (2006). Esterification of (RS)-Ibuprofen by native and commercial lipases in a two-phase system containing ionic liquids. Tetrahedron: Asymmetry, 17(14), 2069–2073.

    Article  CAS  Google Scholar 

  5. Santos, J. C., Mijone, P. D., Nunes, G. F., Perez, V. H., & de Castro, H. F. (2008). Covalent attachment of Candida rugosa lipase on chemically modified hybrid matrix of polysiloxane-polyvinyl alcohol with different activating compounds. Colloids and surfaces B, Biointerfaces, 61(2), 229–236.

    Article  CAS  Google Scholar 

  6. Adlercreutz, P. (2013). Immobilisation and application of lipases in organic media. Chemical Society Reviews, 42(15), 6406–6436.

    Article  CAS  Google Scholar 

  7. Kreiner, M., Parker, M. C., & Moore, B. D. (2001). Enzyme-coated micro-crystals: a 1-step method for high activity biocatalyst preparation. Chemical Communications, 12, 1096–1097.

    Article  Google Scholar 

  8. Shah, S., Sharma, A., & Gupta, M. N. (2008). Cross-linked protein-coated microcrystals as biocatalysts in non-aqueous solvents. Biocatalysis and Biotransformation, 26(4), 266–271.

    Article  CAS  Google Scholar 

  9. Kumari, V., Shah, S., & Gupta, M. N. (2007). Preparation of biodiesel by lipase- catalyzed transesterification of high free fatty acid containing oil from Madhuca indica. Energy & Fuels, 21(1), 368–372.

    Article  CAS  Google Scholar 

  10. Shah, S., & Gupta, M. N. (2007). Kinetic resolution of (+/−)-1-phenylethanol in [Bmim][PF6] using high activity preparations of lipases. Bioorganic & Medicinal Chemistry Letters, 17(4), 921–924.

    Article  CAS  Google Scholar 

  11. Kreiner, M., Amorim Fernandes, J. F., O’Farrell, N., Halling, P. J., & Parker, M. C. (2005). Stability of protein-coated microcrystals in organic solvents. Journal of Molecular Catalysis B: Enzymatic, 33(3-6), 65–72.

    Article  CAS  Google Scholar 

  12. Berglund, P. (2001). Controlling lipase enantioselectivity for organic synthesis. Biomolecular Engineering, 18(1), 13–22.

    Article  CAS  Google Scholar 

  13. Dominguez de Maria, P., Sanchez-Montero, J. M., Sinisterra, J. V., & Alcantara, A. R. (2006). Understanding Candida rugosa lipases: an overview. Biotechnology Advances, 24(2), 180–196.

    Article  CAS  Google Scholar 

  14. Li, X., Huang, S., Xu, L., & Yan, Y. (2013). Conformation and catalytic properties studies of Candida rugosa Lip7 via enantioselective esterification of Ibuprofen in organic solvents and ionic liquids. The Scientific World Journal, 2013, 1–7.

    Google Scholar 

  15. Colton, I. J., Ahmed, S. N., & Kazlauskas, R. J. (1995). A 2-propanol treatment increases the enantioselectivity of Candida rugosa lipase toward esters of chiral carboxylic acids. The Journal of Organic Chemistry, 60(1), 212–217.

    Article  CAS  Google Scholar 

  16. Yang, Z., Niu, X., Fang, X., Chen, G., Zhang, H., Yue, H., Wang, L., Zhao, D., & Wang, Z. (2013). Enantioselective esterification of Ibuprofen under microwave irradiation. Molecules, 18(5), 5472–5481.

    Article  CAS  Google Scholar 

  17. Tutar, H., Yilmaz, E., Pehlivan, E., & Yilmaz, M. (2009). Immobilization of Candida rugosa lipase on sporopollenin from Lycopodium clavatum. International Journal of Biological Macromolecules, 45(3), 315–320.

    Article  CAS  Google Scholar 

  18. Yu, H., Wu, J., & Ching, C. B. (2004). Enhanced activity and enantioselectivity ofCandida rugosa lipase immobilized on macroporous adsorptive resins for ibuprofen resolution. Biotechnology Letters, 26(8), 629–633.

    Article  CAS  Google Scholar 

  19. Hart, F. D., & Huskisson, E. (1984). Non-steroidal anti-inflammatory drugs. Current status and rational therapeutic use. Drugs, 27(3), 232–255.

    Article  CAS  Google Scholar 

  20. Liu, Y., Wang, F., & Tan, T. (2009). Effects of alcohol and solvent on the performance of lipase from Candida sp. in enantioselective esterification of racemic ibuprofen. Journal of Molecular Catalysis B: Enzymatic, 56(2), 126–130.

    Article  CAS  Google Scholar 

  21. Chen, J. C., & Tsai, S. W. (2000). Enantioselective synthesis of (S)Ibuprofen ester prodrug in cyclohexane by Candida rugosa lipase immobilized on accurel MP1000. Biotechnology Progress, 16(6), 986–992.

    Article  CAS  Google Scholar 

  22. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1), 248–254.

    Article  CAS  Google Scholar 

  23. Yang, C., Wang, F., Lan, D., Whiteley, C., Yang, B., & Wang, Y. (2012). Effects of organic solvents on activity and conformation of recombinant Candida antarctica lipase A produced by Pichia pastoris. Process Biochemistry, 47(3), 533–537.

    Article  CAS  Google Scholar 

  24. Raita, M., Champreda, V., & Laosiripojana, N. (2010). Biocatalytic ethanolysis of palm oil for biodiesel production using microcrystalline lipase in tert-butanol system. Process Biochemistry, 45(6), 829–834.

    Article  CAS  Google Scholar 

  25. Costantino, H. R., Griebenow, K., Langer, R., & Klibanov, A. M. (1997). On the pH memory of lyophilized compounds containing protein functional groups. Biotechnology and Bioengineering, 53(3), 345–348.

    Article  CAS  Google Scholar 

  26. Yu, H. W., Chen, H., Wang, X., Yang, Y. Y., & Ching, C. B. (2006). Cross-linked enzyme aggregates (CLEAs) with controlled particles: application to Candida rugosa lipase. Journal of Molecular Catalysis B: Enzymatic, 43(1-4), 124–127.

    Article  CAS  Google Scholar 

  27. Yu, W. H., Fang, M., Tong, D. S., Shao, P., Xu, T. N., & Zhou, C. H. (2013). Immobilization of Candida rugosa lipase on hexagonal mesoporous silicas and selective esterification in nonaqueous medium. Biochemical Engineering Journal, 70, 97–105.

    Article  CAS  Google Scholar 

  28. Raita, M., Laothanachareon, T., Champreda, V., & Laosiripojana, N. (2011). Biocatalytic esterification of palm oil fatty acids for biodiesel production using glycine-based cross-linked protein coated microcrystalline lipase. Journal of Molecular Catalysis B: Enzymatic, 73(1-4), 74–79.

    Article  CAS  Google Scholar 

  29. Kreiner, M., & Parker, M. C. (2005). Protein-coated microcrystals for use in organic solvents: application to oxidoreductases. Biotechnology Letters, 27(20), 1571–1577.

    Article  CAS  Google Scholar 

  30. Moore, B. D., Partridge, J., Bradley, L. & Vos, J. (2008). Precipitation stabilising compositions. A61K 9/14 (2006.01).

  31. Zheng, J., Xu, L., Liu, Y., Zhang, X., & Yan, Y. (2012). Lipase-coated K2SO4 micro-crystals: preparation, characterization, and application in biodiesel production using various oil feedstocks. Bioresource Technology, 110, 224–231.

    Article  CAS  Google Scholar 

  32. Zhu, K., Jutila, A., Tuominen, E. K., Patkar, S. A., Svendsen, A., & Kinnunen, P. K. (2001). Impact of the tryptophan residues of Humicola lanuginosa lipase on its thermal stability. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1547(2), 329–338.

    Article  CAS  Google Scholar 

  33. Bai, S., Guo, Z., Liu, W., & Sun, Y. (2006). Resolution of (±)-menthol by immobilized Candida rugosa lipaseon superparamagnetic nanoparticles. Food Chemistry, 96(1), 1–7.

    Article  CAS  Google Scholar 

  34. Chen, D., Peng, C., Zhang, H., & Yan, Y. (2013). Assessment of activities and conformation of lipases treated with sub- and supercritical carbon dioxide. Applied Biochemistry and Biotechnology, 169(7), 2189–2201.

    Article  CAS  Google Scholar 

  35. Liu, Y., Chen, D., & Yan, Y. (2013). Effect of ionic liquids, organic solvents and supercritical CO2 pretreatment on the conformation and catalytic properties of Candida rugosa lipase. Journal of Molecular Catalysis B: Enzymatic, 90, 123–127.

    Article  CAS  Google Scholar 

  36. Pavlidis, I. V., Gournis, D., Papadopoulos, G. K., & Stamatis, H. (2009). Lipases in water-in-ionic liquid microemulsions: structural and activity studies. Journal of Molecular Catalysis B: Enzymatic, 60(1-2), 50–56.

    Article  CAS  Google Scholar 

  37. Sheldon, R. A., Lau, R. M., Sorgedrager, M. J., van Rantwijk, F., & Seddon, K. R. (2002). Biocatalysis in ionic liquids. Green Chemistry, 4(2), 147–151.

    Article  CAS  Google Scholar 

  38. Solanki, K., Gupta, M. N., & Halling, P. J. (2012). Examining structure-activity correlations of some high activity enzyme preparations for low water media. Bioresource Technology, 115, 147–151.

    Article  CAS  Google Scholar 

  39. Gaur, R., Gupta, G. N., Vamsikrishnan, M., & Khare, S. K. (2008). Protein-coated microcrystals of Pseudomonas aeruginosa PseA lipase. Applied Biochemistry and Biotechnology, 151(2-3), 160–166.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (nos. 31170078, 31070089, and J1103514), the National High Technology Research and Development Program of China (nos. 2011AA02A204 and 2014AA093510), the Innovation Foundation of Shenzhen Government (no. JCYJ20120831111657864), the Innovation Foundation of HUST (nos. 2011TS100, 2014QN119, and 2014NY007), and the Fundamental Research Funds for the Central Universities HUST (no. 2172012SHYJ004). Many thanks to the Analytical and Testing Center of HUST for their valuable assistance with SEM and FT-IR measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Xu or Yunjun Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Li, X., Xu, L. et al. Protein-Coated Microcrystals from Candida rugosa Lipase: Its Immobilization, Characterization, and Application in Resolution of Racemic Ibuprofen. Appl Biochem Biotechnol 177, 36–47 (2015). https://doi.org/10.1007/s12010-015-1725-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1725-9

Keywords

Navigation