Skip to main content
Log in

Assessment of Activities and Conformation of Lipases Treated with Sub- and Supercritical Carbon Dioxide

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In order to illustrate the underlining mechanism of the effect of high pressure on lipases from different resources, the influence of compressed carbon dioxide treatment on the esterification activities and conformation of the three lipases Candida rugosa lipase (CRL), Pseudomonas fluorescens lipase, and Rhizopus oryzae lipase was investigated in the present work. The results showed that the lipases activities were significantly enhanced in most of high-pressure treatments, except the pressure had a negative effect on CRL activity in supercritical condition. Mild depressurization rate could remain the lipase’s activity by protecting its rigid structure under supercritical fluid. Conformational analysis by Fourier transform-infrared spectrometry and fluorescence emission spectra revealed that the variances of lipase activity after high-pressure treatment were correlated with the changes of its α-helix content and fluorescence intensity. Additionally, transesterification catalyzed by three lipases in supercritical carbon dioxide were conducted, and 87.2 % biodiesel conversion was obtained by CRL after 3 h, resulting in a great reduction of reaction time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. de Oliveira, D., Feihrmann, A. C., Dariva, C., Cunha, A. G., Bevilaqua, J. V., Destain, J., et al. (2006). Journal of Molecular Catalysis B: Enzymatic, 39, 117–123.

    Article  Google Scholar 

  2. Dhake, K. P., Deshmukh, K. M., Patil, Y. P., Singhal, R. S., & Bhanage, B. M. (2011). Journal of Biotechnology, 156, 46–51.

    Article  CAS  Google Scholar 

  3. Eisenmenger, M. J., & Reyes-De-Corcuera, J. I. (2009). Enzyme and Microbial Technology, 45, 118–125.

    Article  CAS  Google Scholar 

  4. Habulin, M., Šabeder, S., Paljevac, M., Primožič, M., & Knez, Ž. (2007). Journal of Supercritical Fluids, 43, 199–203.

    Article  CAS  Google Scholar 

  5. Knez, Ž. (2009). Journal of Supercritical Fluids, 47, 357–372.

    Article  CAS  Google Scholar 

  6. Liu, K., & Huang, Y. (2010). Journal of Biotechnology, 146, 215–220.

    Article  CAS  Google Scholar 

  7. Romero, M. D., Calvo, L., Alba, C., Daneshfar, A., & Ghaziaskar, H. S. (2005). Enzyme and Microbial Technology, 37, 42–48.

    Article  CAS  Google Scholar 

  8. Lee, J. H., Kim, S. B., Kang, S. W., Song, Y. S., Park, C., Han, S. O., et al. (2011). Bioresource Technology, 102, 2105–2108.

    Article  CAS  Google Scholar 

  9. Varma, M. N., Deshpande, P. A., & Madras, G. (2010). Fuel, 89, 1641–1646.

    Article  CAS  Google Scholar 

  10. Manera, A. P., Kuhn, G., Polloni, A., Marangoni, M., Zabot, G., Kalil, S. J., et al. (2011). Food Chemistry, 125, 1235–1240.

    Article  CAS  Google Scholar 

  11. Kuhn, G. D. O., Coghetto, C., Treichel, H., de Oliveira, D., & Oliveira, J. V. (2011). Process Biochemistry, 46, 2286–2290.

    Article  CAS  Google Scholar 

  12. Knez, Ž., Laudani, C. G., Habulin, M., & Reverchon, E. (2007). Biotechnology and Bioengineering, 97, 1366–1375.

    Article  CAS  Google Scholar 

  13. Ciftci, O. N., & Temelli, F. (2011). Journal of Supercritical Fluids, 58, 79–87.

    Article  CAS  Google Scholar 

  14. Talukder, M. M. R., Tamalampudy, S., Li, C. J., Yanglin, L., Wu, J., Kondo, A., et al. (2007). Biochemical Engineering Journal, 33, 60–65.

    Article  CAS  Google Scholar 

  15. Kim, K. R., Kwon, D. Y., Yoon, S. H., Kim, W. Y., & Kim, K. H. (2005). Protein Expression and Purification, 39, 124–129.

    Article  CAS  Google Scholar 

  16. Liu, T., Liu, Y., Wang, X., Li, Q., Wang, J., & Yan, Y. (2011). Journal of Molecular Catalysis B: Enzymatic, 71, 45–50.

    Article  CAS  Google Scholar 

  17. Liu, Y., Chen, D., Xu, L., & Yan, Y. (2012). Enzyme and Microbial Technology, 51, 354–358.

    Article  CAS  Google Scholar 

  18. Fricks, A. T., Souza, D. P. B., Oestreicher, E. G., Antunes, O. A. C., Girardi, J. S., Oliveira, D., et al. (2006). Journal of Supercritical Fluids, 38, 347–353.

    Article  CAS  Google Scholar 

  19. Oliveira, D., Feihrmann, A. C., Rubira, A. F., Kunita, M. H., Dariva, C., & Oliveira, J. V. (2006). Journal of Supercritical Fluids, 38, 373–382.

    Article  CAS  Google Scholar 

  20. Liu, Y., Chen, D., Yan, Y., Peng, C., & Xu, L. (2011). Bioresource Technology, 102, 10414–10418.

    Article  CAS  Google Scholar 

  21. Liu, Y., Zhang, X., Tan, H., Yan, Y., & Hameed, B. H. (2010). Process Biochemistry, 45, 1176–1180.

    Article  CAS  Google Scholar 

  22. Franken, L., Marcon, N., Treichel, H., Oliveira, D., Freire, D., Dariva, C., et al. (2010). Food and Bioprocess Technology, 3, 511.

    Article  CAS  Google Scholar 

  23. Pavlidis, I. V., Gournis, D., Papadopoulos, G. K., & Stamatis, H. (2009). Journal of Molecular Catalysis B: Enzymatic, 60, 50–56.

    Article  CAS  Google Scholar 

  24. Pan, S., Liu, X., Xie, Y., Yi, Y., Li, C., Yan, Y., et al. (2010). Bioresource Technology, 101, 9822–9824.

    Article  CAS  Google Scholar 

  25. Santiago-Gómez, M. P., Kermasha, S., Nicaud, J., Belin, J., & Husson, F. (2008). Journal of Molecular Catalysis B: Enzymatic, 52–53, 128–132.

    Article  Google Scholar 

  26. Zhang, T., Lv, C., Yun, S., Liao, X., Zhao, G., & Leng, X. (2012). Food Chemistry, 130, 273–278.

    Article  CAS  Google Scholar 

  27. Liu, W., Liu, J., Liu, C., Zhong, Y., Liu, W., & Wan, J. (2009). Innovative Food Science and Emerging Technologies, 10, 142–147.

    Article  CAS  Google Scholar 

  28. Li, H., Zhu, K., Zhou, H., & Peng, W. (2012). Food Chemistry, 132, 808–814.

    Article  CAS  Google Scholar 

  29. Wu, X. Y., Jääskeläinen, S., & Linko, Y. (1996). Enzyme and Microbial Technology, 19, 226–231.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support by the National Natural Science Foundation of P. R. China (NSFC; Nos. 31070089 and 31170078), the National High Technology Research and Development Program of P. R. China (863 Program; No. 2011AA02A204). Many thanks are due to Miss Xiaoman Gu and Hong Chen from the Analytical and Testing Center of HUST for FT-IR data analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dawei Chen, Houjin Zhang or Yunjun Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, D., Peng, C., Zhang, H. et al. Assessment of Activities and Conformation of Lipases Treated with Sub- and Supercritical Carbon Dioxide. Appl Biochem Biotechnol 169, 2189–2201 (2013). https://doi.org/10.1007/s12010-013-0132-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0132-3

Keywords

Navigation