Skip to main content
Log in

Semi-rational Directed Evolution of Monoamine Oxidase for Kinetic Resolution of rac-Mexiletine

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Semi-rational directed evolution was applied to the D5 variant of monoamine oxidase from Aspergillus niger (MAO-N-D5) with the aim of deriving the more desirable (R)-mexiletine through the kinetic resolution of mexiletine enantiomers. Although MAO-N-D5 shows no activity towards rac-mexiletine, theoretical molecular docking studies revealed the potential binding conformations of both mexiletine enantiomers and MAO-N-D5. The key factors affecting the catalytic activity and specificity were identified. Based on the docking results, six residues in the binding pocket and along the binding pathway were selected as key sites for saturation mutagenesis of MAO-N-D5. Through several rounds of screening and combinatorial experiments, two active MAO variants with high enantioselectivities towards (S)-mexiletine evolved, namely A-1 (F210V/L213C, E = 101) and AC-1 (F210V/I367T, E = 69). Molecular simulation experiments indicated that the introduced activity of these variants may be due to the reduced steric hindrance in the binding pocket of the relatively small-sized amino acid residues, a synergetic effect of the entrance residue mutation, and the formation of a new disulfide bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Atkin, K. E., Reiss, R., Koehler, A. V., Bailey, K. R., Hart, S., Turkenburg, J. P., Turner, N. J., Brzozowski, A. M., & Gorgan, G. (2008). The structure of monoamine oxidase from Aspergillus niger provides a molecular context for improvements in activity obtained by directed evolution. Journal of Molecular Biology, 384, 1218–1231.

    Article  CAS  Google Scholar 

  2. Atkin, K. E., Reiss, R., Turner, N. J., Rrzozowski, A. M., & Grogan, G. (2008). Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of variants of monoamine oxidase from Aspergillus niger. Acta Crystallographica Section F: Structural Biology Communications, 64, 182–185.

    CAS  Google Scholar 

  3. Braun, M., Kim, J. M., & Schmid, R. D. (1992). Purification and some properties of an extracellular l-amino acid oxidase from Cellulomonas cellulans AM8 isolated from soil. Applied Microbiology and Biotechnology, 37, 594–598.

    Article  CAS  Google Scholar 

  4. Carocci, A., Catalano, A., Bruno, C., Lentini, G., Franchini, C., Bellis, M. D., Luca, A. D., & Camerino, D. C. (2010). Synthesis and in vitro sodium channel blocking activity evaluation of novel homochiral mexiletine analogs. Chirality, 22, 299–307.

    Article  CAS  Google Scholar 

  5. Carr, R., Alexeeva, M., Enright, A., Eve, T. S. C., Dawson, M. J., & Turner, N. J. (2003). Directed evolution of an amine oxidase possessing both broad substrate specificity and high enantioselectivity. Angewandte Chemie International Edition, 42, 4807–4810.

    Article  CAS  Google Scholar 

  6. Eve, T. S. C., Wells, A., & Turner, N. J. (2007). Enantioselective oxidation of O-methyl-N-hydroxylamines using monoamine oxidase N as catalyst. Chemical Communications, 15, 1530–1531.

    Article  Google Scholar 

  7. Franchini, C., Carocci, A., Catalano, A., Cavalluzzi, M. M., Corbo, F., Lentini, G., Scilimati, A., Tortorella, P., Camerino, D. C., & De Luca, A. (2003). Optically active mexiletine analogues as stereoselective blockers of voltage-gated Na+ channels. Journal of Medicinal Chemistry, 46, 5238–5248.

    Article  CAS  Google Scholar 

  8. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Jr., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., & Pople, J. A. (2003). Gaussian 03, revision A.3. Wallingford: Gaussian, Inc.

    Google Scholar 

  9. Ghislieri, D., & Turner, N. (2014). Biocatalytic approaches to the synthesis of enantiomerically pure chiral amines. Topics in Catalysis, 57, 284–300.

    Article  CAS  Google Scholar 

  10. Hellemond, E. W., Dijk, M., Heuts, D., Janssen, D. B., & Fraaije, M. W. (2008). Discovery and characterization of a putrescine oxidase from Rhodococcus erythropolis NCIMB 11540. Applied Microbiology and Biotechnology, 78, 455–463.

    Article  Google Scholar 

  11. Holt, A., & Palcic, M. M. (2006). A peroxidase-coupled continuous absorbance plate-reader assay for flavin monoamine oxidases, copper-containing amine oxidases and related enzymes. Nature Protocols, 1, 2498–2505.

    Article  CAS  Google Scholar 

  12. Koszelewski, D., Pressnitz, D., Clay, D., & Kroutil, W. (2009). Deracemization of mexiletine biocatalyzed by ω-transaminases. Organic Letters, 11, 4810–4812.

    Article  CAS  Google Scholar 

  13. Loughhead, D. G., Flippin, L. A., & Weikert, R. J. (1999). Synthesis of mexiletine stereoisomers and related compounds via SNAr nucleophilic substitution of a Cr(CO)3-complexed aromatic fluoride. Journal of Organic Chemistry, 64, 3373–3375.

    Article  CAS  Google Scholar 

  14. Luca, A. D., Natuzzi, F., Falcone, G., Duranti, A., Lentini, G., Franchini, C., Tortorella, V., & Camerino, D. C. (1997). Inhibition of frog skeletal muscle sodium channels by newly synthesized chiral derivatives of mexiletine and tocainide. Naunyn-Schmiedeberg’s Archives of Pharmacology, 356, 777–787.

    Article  Google Scholar 

  15. Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19, 1639–1662.

    Article  CAS  Google Scholar 

  16. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2008). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25, 1605–1612.

    Article  Google Scholar 

  17. Reetz, M. T., & Carballeira, J. D. (2007). Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nature Protocols, 2, 891–903.

    Article  CAS  Google Scholar 

  18. Reetz, M. T., Carballeira, J. D., Peyralans, J., Höbenreich, H., Maichele, A., & Vogel, A. (2006). Expanding the substrate scope of enzymes: combining mutations obtained by CASTing. Chemistry--A European Journal, 12, 6031–6038.

    Article  CAS  Google Scholar 

  19. Reetz, M. T., Kahakeaw, D., & Lohmer, R. (2008). Addressing the numbers problem in directed evolution. A European Journal of Chemical Biology, 9, 1797–1804.

    Article  CAS  Google Scholar 

  20. Turgeon, J., Uprichard, A. C. G., Bélanger, P. M., Harron, D. W. G., & Grech-Bélanger, O. (1991). Resolution and electrophysiological effects of mexiletine enantiomers. The Journal of Pharmacy Pharmacology, 43, 630–635.

    Article  CAS  Google Scholar 

  21. Turner, N., Fotheringham, I., & Speight, R. (2005). Novel biocatalyst technology for the preparation of chiral amines. ChemInform, 36, 114–122.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions (CIT&TCD20130324) and National Natural Science Foundation of China (Grant No. 31100584).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiguo Wang or Linshu Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Ma, Y., He, M. et al. Semi-rational Directed Evolution of Monoamine Oxidase for Kinetic Resolution of rac-Mexiletine. Appl Biochem Biotechnol 176, 2267–2278 (2015). https://doi.org/10.1007/s12010-015-1716-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1716-x

Keywords

Navigation