Skip to main content
Log in

Integration of Quercetin-Iron Complexes into Phosphatidylcholine or Phosphatidylethanolamine Liposomes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

It is well known that flavonoids can chelate transition metals. Flavonoid-metal complexes exhibit a high antioxidative and therapeutic potential. However, the complexes are frequently hydrophobic ones and low soluble in water, which restricts their medical applications. Integration of these complexes into liposomes may increase their bioavailability and therapeutic effect. Here, we studied the interaction of quercetin-iron complexes with dimyristoylphosphatidylcholine (DMPC) or palmitoyl-oleoyl phosphatidylethanolamine (POPE) multilamellar liposomes. Differential scanning calorimetry (DSC) and freeze-fracture electron microscopy revealed that quercetin-iron complexes did not interact with liposomes. Quercetin however could penetrate lipid bilayers, when added to liposomes at a temperature above lipid melting. Iron cations added later penetrated into the lipid bilayers and produced complexes with quercetin in the liposomes. The quercetin-iron entry in POPE liposomes was improved when the suspension was heated above the temperature of the bilayer-hexagonal HII phase transition of the lipid. The approach proposed facilitates the integration of quercetin-iron complexes into liposomes and may promote their use in medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DMPC:

1,2-Dimyristoyl-sn-glycero-3-phosphocholine

POPE:

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine

DSC:

Differential scanning calorimetry

T p :

Temperature of pretransition

T m :

Temperature of the main phase transition

T h :

Temperature of transition from the bilayer to the hexagonal HII phase

References

  1. Solanki, I., Parihar, P., Mansuri, M. L., & Parihar, M. S. (2015). Flavonoid-based therapies in the early management of neurodegenerative diseases. Advances in Nutrition, 6, 64–72.

    Article  CAS  Google Scholar 

  2. Sak, K. (2014). Cytotoxicity of dietary flavonoids on different human cancer types. Pharmacognosy Reviews, 8, 122–146.

    Article  CAS  Google Scholar 

  3. Joven, J., Micol, V., Segura-Carretero, A., Alonso-Villaverde, C., & Menendez, J. A. (2014). Polyphenols and the modulation of gene expression pathways: can we eat our way out of the danger of chronic disease? Critical Reviews in Food Science and Nutrition, 54, 985–1001.

    Article  CAS  Google Scholar 

  4. Vauzour, D. (2014). Effect of flavonoids on learning, memory and neurocognitive performance: relevance and potential implications for Alzheimer’s disease pathophysiology. Journal of the Science of Food and Agriculture, 94, 1042–1056.

    Article  CAS  Google Scholar 

  5. Vuong, Q. V. (2014). Epidemiological evidence linking tea consumption to human health: a review. Critical Reviews in Food Science and Nutrition, 54, 523–536.

    Article  CAS  Google Scholar 

  6. Nile, S. H., & Park, S. W. (2014). Edible berries: bioactive components and their effect on human health. Nutrition, 30, 134–144.

    Article  CAS  Google Scholar 

  7. Mignet, N., Seguin, J., & Chabot, G. G. (2013). Bioavailability of polyphenol liposomes: a challenge ahead. Pharmaceutics, 5, 457–471.

    Article  CAS  Google Scholar 

  8. Gibis, M., Vogt, E., & Weiss, J. (2012). Encapsulation of polyphenolic grape seed extract in polymer-coated liposomes. Food & Function, 3, 246–254.

    Article  CAS  Google Scholar 

  9. Cai, X., Fang, Z., Dou, J., Yu, A., & Zhai, G. (2013). Bioavailability of quercetin: problems and promises. Current Medicinal Chemistry, 20, 2572–2582.

    Article  CAS  Google Scholar 

  10. Park, S. N., Lee, M. H., Kim, S. J., & Yu, E. R. (2013). Preparation of quercetin and rutin-loaded ceramide liposomes and drug-releasing effect in liposome-in-hydrogel complex system. Biochemical and Biophysical Research Communications, 435, 361–366.

    Article  CAS  Google Scholar 

  11. Caddeo, C., Diez-Sales, O., Pons, R., Fernandez-Busquets, X., Fadda, A. M., & Manconi, M. (2014). Topical anti-inflammatory potential of quercetin in lipid-based nanosystems: in vivo and in vitro evaluation. Pharmaceutical Research, 31, 959–968.

    Article  CAS  Google Scholar 

  12. Castangia, I., Nacher, A., Caddeo, C., Valenti, D., Fadda, A. M., Diez-Sales, O., Ruiz-Sauri, A., & Manconi, M. (2014). Fabrication of quercetin and curcumin bionanovesicles for the prevention and rapid regeneration of full-thickness skin defects on mice. Acta Biomaterialia, 10, 1292–1300.

    Article  CAS  Google Scholar 

  13. Liu, D., Hu, H., Lin, Z., Chen, D., Zhu, Y., Hou, S., & Shi, X. (2013). Quercetin deformable liposome: preparation and efficacy against ultraviolet B induced skin damages in vitro and in vivo. Journal of Photochemistry and Photobiology B, 127, 8–17.

    Article  CAS  Google Scholar 

  14. Liu, H., Xue, J. X., Li, X., Ao, R., & Lu, Y. (2013). Quercetin liposomes protect against radiation-induced pulmonary injury in a murine model. Oncology Letters, 6, 453–459.

    Google Scholar 

  15. Cadena, P. G., Pereira, M. A., Cordeiro, R. B., Cavalcanti, I. M., Barros, N. B., Pimentel, M. C., Lima Filho, J. L., Silva, V. L., & Santos-Magalhaes, N. S. (2013). Nanoencapsulation of quercetin and resveratrol into elastic liposomes. Biochimica et Biophysica Acta, 1828, 309–316.

    Article  CAS  Google Scholar 

  16. Wang, G., Wang, J. J., Chen, X. L., Du, S. M., Li, D. S., Pei, Z. J., Lan, H., & Wu, L. B. (2013). The JAK2/STAT3 and mitochondrial pathways are essential for quercetin nanoliposome-induced C6 glioma cell death. Cell Death & Disease, 4, e746.

    Article  CAS  Google Scholar 

  17. Long, Q., Xiel, Y., Huang, Y., Wu, Q., Zhang, H., Xiong, S., Liu, Y., Chen, L., Wei, Y., Zhao, X., & Gong, C. (2013). Induction of apoptosis and inhibition of angiogenesis by PEGylated liposomal quercetin in both cisplatin-sensitive and cisplatin-resistant ovarian cancers. Journal of Biomedical Nanotechnology, 9, 965–975.

    Article  CAS  Google Scholar 

  18. Gang, W., Jie, W. J., Ping, Z. L., Ming, D. S., Ying, L. J., Lei, W., & Fang, Y. (2012). Liposomal quercetin: evaluating drug delivery in vitro and biodistribution in vivo. Expert Opinion on Drug Delivery, 9, 599–613.

    Article  Google Scholar 

  19. He, B., Wang, X., Shi, H. S., Xiao, W. J., Zhang, J., Mu, B., Mao, Y. Q., Wang, W., & Wang, Y. S. (2013). Quercetin liposome sensitizes colon carcinoma to thermotherapy and thermochemotherapy in mice models. Integrative Cancer Therapies, 12, 264–270.

    Article  CAS  Google Scholar 

  20. Saija, A., Tomaino, A., Trombetta, D., Pellegrino, M. L., Tita, B., Messina, C., Bonina, F. P., Rocco, C., Nicolosi, G., & Castelli, F. (2003). ‘In vitro’ antioxidant and photoprotective properties and interaction with model membranes of three new quercetin esters. European Journal of Pharmaceutics and Biopharmaceutics, 56, 167–174.

    Article  CAS  Google Scholar 

  21. Pawlikowska-Pawlega, B., Dziubinska, H., Krol, E., Trebacz, K., Jarosz-Wilkolazka, A., Paduch, R., Gawron, A., & Gruszecki, W. I. (2014). Characteristics of quercetin interactions with liposomal and vacuolar membranes. Biochimica et Biophysica Acta, 1838, 254–265.

    Article  CAS  Google Scholar 

  22. Barrajon-Catalan, E., Herranz-Lopez, M., Joven, J., Segura-Carretero, A., Alonso-Villaverde, C., Menendez, J. A., & Micol, V. (2014). Molecular promiscuity of plant polyphenols in the management of age-related diseases: far beyond their antioxidant properties. Advances in Experimental Medicine and Biology, 824, 141–159.

    Article  CAS  Google Scholar 

  23. Harasym, J., & Oledzki, R. (2014). Effect of fruit and vegetable antioxidants on total antioxidant capacity of blood plasma. Nutrition, 30, 511–517.

    Article  CAS  Google Scholar 

  24. Han, R. M., Zhang, J. P., & Skibsted, L. H. (2012). Reaction dynamics of flavonoids and carotenoids as antioxidants. Molecules, 17, 2140–2160.

    Article  CAS  Google Scholar 

  25. Galleano, M., Verstraeten, S. V., Oteiza, P. I., & Fraga, C. G. (2010). Antioxidant actions of flavonoids: thermodynamic and kinetic analysis. Archives of Biochemistry and Biophysics, 501, 23–30.

    Article  CAS  Google Scholar 

  26. Terao, J. (2009). Dietary flavonoids as antioxidants. Forum of Nutrition, 61, 87–94.

    Article  CAS  Google Scholar 

  27. Kostyuk, V. A., Potapovich, A. I., Strigunova, E. N., Kostyuk, T. V., & Afanas’ev, I. B. (2004). Experimental evidence that flavonoid metal complexes may act as mimics of superoxide dismutase. Archives of Biochemistry and Biophysics, 428, 204–208.

    Article  CAS  Google Scholar 

  28. Kostyuk, V. A., Potapovich, A. I., Kostyuk, T. V., & Cherian, M. G. (2007). Metal complexes of dietary flavonoids: evaluation of radical scavenger properties and protective activity against oxidative stress in vivo. Cellular and Molecular Biology, 53, 62–69.

    CAS  Google Scholar 

  29. Afanas’eva, I. B., Ostrakhovitch, E. A., Mikhal’chik, E. V., Ibragimova, G. A., & Korkina, L. G. (2001). Enhancement of antioxidant and anti-inflammatory activities of bioflavonoid rutin by complexation with transition metals. Biochemical Pharmacology, 61, 677–684.

    Article  Google Scholar 

  30. Kopacz, M., Woznicka, E., & Gruszecka, J. (2005). Antibacterial activity of morin and its complexes with La (III), Gd (III) and Lu (III) ions. Acta Poloniae Pharmaceutica, 62, 65–67.

    CAS  Google Scholar 

  31. Kim, Y. A., Tarahovsky, Y. S., Yagolnik, E. A., Kuznetsova, S. M., & Muzafarov, E. N. (2013). Lipophilicity of flavonoid complexes with iron (II) and their interaction with liposomes. Biochemical and Biophysical Research Communications, 431, 680–685.

    Article  CAS  Google Scholar 

  32. Wang, X. X., Li, Y. B., Yao, H. J., Ju, R. J., Zhang, Y., Li, R. J., Yu, Y., Zhang, L., & Lu, W. L. (2011). The use of mitochondrial targeting resveratrol liposomes modified with a dequalinium polyethylene glycol-distearoylphosphatidyl ethanolamine conjugate to induce apoptosis in resistant lung cancer cells. Biomaterials, 32, 5673–5687.

    Article  CAS  Google Scholar 

  33. Sanchez, M., Aranda, F. J., Teruel, J. A., & Ortiz, A. (2011). New pH-sensitive liposomes containing phosphatidylethanolamine and a bacterial dirhamnolipid. Chemistry and Physics of Lipids, 164, 16–23.

    Article  CAS  Google Scholar 

  34. Teong, B., Kuo, S. M., Chen, C. H., Chen, Y. K., Cheng, Z. J., & Huang, H. H. (2014). Characterization and human osteoblastic proliferation- and differentiation-stimulatory effects of phosphatidylcholine liposomes-encapsulated propranolol hydrochloride. Biomedical Materials and Engineering, 24, 1875–1887.

    CAS  Google Scholar 

  35. Cruz-Leal, Y., Machado, Y., Lopez-Requena, A., Canet, L., Laborde, R., Alvares, A. M., Lucatelli Laurindo, M. F., Santo Tomas, J. F., Alonso, M. E., Alvarez, C., Mortara, R. A., Popi, A. F., Mariano, M., Perez, R., & Lanio, M. E. (2014). Role of B-1 cells in the immune response against an antigen encapsulated into phosphatidylcholine-containing liposomes. International Immunology, 26, 427–437.

    Article  CAS  Google Scholar 

  36. MacDonald, R. C., MacDonald, R. I., Menco, B. P., Takeshita, K., Subbarao, N. K., & Hu, L. R. (1991). Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochimica et Biophysica Acta, 1061, 297–303.

    Article  CAS  Google Scholar 

  37. Tarahovsky, Y. S., Deev, A. A., Masulis, I. S., & Ivanitsky, G. R. (1998). Structural organization and phase behavior of DNA-calcium-dipalmitoylphosphatidylcholine complex. Biochemistry (Moscow), 63, 1126–1131.

    CAS  Google Scholar 

  38. Barcelo, F., Prades, J., Encinar, J. A., Funari, S. S., Vogler, O., Gonzalez-Ros, J. M., & Escriba, P. V. (2007). Interaction of the C-terminal region of the Ggamma protein with model membranes. Biophysical Journal, 93, 2530–2541.

    Article  CAS  Google Scholar 

  39. Matuoka, S., Kato, S., & Hatta, I. (1994). Temperature change of the ripple structure in fully hydrated dimyristoylphosphatidylcholine/cholesterol multibilayers. Biophysical Journal, 67, 728–736.

    Article  CAS  Google Scholar 

  40. Wang, X., Semmler, K., Richter, W., & Quinn, P. J. (2000). Ripple phases induced by alpha-tocopherol in saturated diacylphosphatidylcholines. Archives of Biochemistry and Biophysics, 377, 304–314.

    Article  CAS  Google Scholar 

  41. Suwalsky, M., Martinez, F., Cardenas, H., Grzyb, J., & Strzalka, K. (2005). Iron affects the structure of cell membrane molecular models. Chemistry and Physics of Lipids, 134, 69–77.

    Article  CAS  Google Scholar 

  42. Kasvosve, I., & Delanghe, J. (2002). Total iron binding capacity and transferrin concentration in the assessment of iron status. Clinical Chemistry and Laboratory Medicine, 40, 1014–1018.

    CAS  Google Scholar 

  43. Marsh, D. (2011). Pivotal surfaces in inverse hexagonal and cubic phases of phospholipids and glycolipids. Chemistry and Physics of Lipids, 164, 177–183.

    Article  CAS  Google Scholar 

  44. Funari, S. S., Rebbin, V., Marzorati, L., & di Vitta, C. (2011). Membrane morphology modifications induced by hydroquinones. Langmuir, 27, 8257–8262.

    Article  CAS  Google Scholar 

  45. Tenchov, B., Koynova, R., & Rapp, G. (2001). New ordered metastable phases between the gel and subgel phases in hydrated phospholipids. Biophysical Journal, 80, 1873–1890.

    Article  CAS  Google Scholar 

  46. Dabbagh-Bazarbachi, H., Clergeaud, G., Quesada, I. M., Ortiz, M., O’Sullivan, C. K., & Fernandez-Larrea, J. B. (2014). Zinc ionophore activity of quercetin and epigallocatechin-gallate: from hepa 1–6 cells to a liposome model. Journal of Agricultural and Food Chemistry, 62, 8085–8093.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by RFFI grants 13-04-97526 and 14-04-31308, Russian Federation.

Compliance with Ethical Standards

We believe that the presented research complies with the ethical rules applicable for the journal Applied Biochemistry and Biotechnology

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yury S. Tarahovsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y.A., Tarahovsky, Y.S., Yagolnik, E.A. et al. Integration of Quercetin-Iron Complexes into Phosphatidylcholine or Phosphatidylethanolamine Liposomes. Appl Biochem Biotechnol 176, 1904–1913 (2015). https://doi.org/10.1007/s12010-015-1686-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1686-z

Keywords

Navigation