Skip to main content

Advertisement

Log in

Advances in Anthrax Detection: Overview of Bioprobes and Biosensors

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Anthrax is an infectious disease caused by Bacillus anthracis. Although anthrax commonly affects domestic and wild animals, it causes a rare but lethal infection in humans. A variety of techniques have been introduced and evaluated to detect anthrax using cultures, polymerase chain reaction, and immunoassays to address the potential threat of anthrax being used as a bioweapon. The high-potential harm of anthrax in bioterrorism requires sensitive and specific detection systems that are rapid, field-ready, and real-time monitoring. Here, we provide a systematic overview of anthrax detection probes with their potential applications in various ultra-sensitive diagnostic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

EF:

Edema factor

EAM:

Electrically active magnetic

EAPM:

Electrically active polyaniline-coated magnetic nanoparticles

ENIA:

Europium nanoparticle-based immunoassay

HTRF:

Homogenous time-resolved fluorescence

LF:

Lethal factor

PCR:

Polymerase chain reaction

PA:

Protective antigen

PDPP:

Polyvalent directed peptide polymer

PNAs:

Peptide-nucleic acids

QCM:

Quartz crystal microbalance

QDs:

Quantum-dots

SPR:

Surface plasmon resonance

References

  1. Frankel, A.E., Kuo, S.R., Dostal, D., Watson, L., Duesbery, N.S., Cheng, C.P., Cheng, H.J., & Leppla, S.H. (2009). Pathophysiology of anthrax. Frontiers in Bioscience, 14, 4516–4524.

    CAS  Google Scholar 

  2. Moayeri, M., & Leppla, S.H. (2004). The roles of anthrax toxin in pathogenesis. Current Opinion in Microbiology, 7, 19–24.

    CAS  Google Scholar 

  3. Mock, M., & Fouet, A. (2001). Anthrax. Annual Review of Microbiology, 55, 647–671.

    CAS  Google Scholar 

  4. Barth, H., Aktories, K., Popoff, M.R., & Stiles, B.G. (2004). Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiology and Molecular Biology Reviews: MMBR, 68, 373–402. table of contents.

    CAS  Google Scholar 

  5. Green, B.D., Battisti, L., Koehler, T.M., Thorne, C.B., & Ivins, B.E. (1985). Demonstration of a capsule plasmid in Bacillus anthracis. Infection and Immunity, 49, 291–297.

    CAS  Google Scholar 

  6. Mikesell, P., Ivins, B.E., Ristroph, J.D., & Dreier, T.M. (1983). Evidence for plasmid-mediated toxin production in Bacillus anthracis. Infection and Immunity, 39, 371–376.

    CAS  Google Scholar 

  7. Lim, D.V., Simpson, J.M., Kearns, E.A., & Kramer, M.F. (2005). Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clinical Microbiology Reviews, 18, 583–607.

    CAS  Google Scholar 

  8. Dover, J.E., Hwang, G.M., Mullen, E.H., Prorok, B.C., & Suh, S.J. (2009). Recent advances in peptide probe-based biosensors for detection of infectious agents. Journal of Microbiological Methods, 78, 10–19.

    CAS  Google Scholar 

  9. Deisingh, A.K., & Thompson, M. (2002). Detection of infectious and toxigenic bacteria. The Analyst, 127, 567–581.

    CAS  Google Scholar 

  10. van der Linden, R.H., Frenken, L.G., de Geus, B., Harmsen, M.M., Ruuls, R.C., Stok, W., de Ron, L., Wilson, S., Davis, P., & Verrips, C.T. (1999). Comparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies. Biochimica et Biophysica Acta, 1431, 37–46.

    Google Scholar 

  11. Hamers-Casterman, C., Atarhouch, T., Muyldermans, S., Robinson, G., Hamers, C., Songa, E.B., Bendahman, N., & Hamers, R. (1993). Naturally occurring antibodies devoid of light chains. Nature, 363, 446–448.

    CAS  Google Scholar 

  12. Greenberg, A.S., Avila, D., Hughes, M., Hughes, A., Mckinney, E.C., & Flajnik, M.F. (1995). A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature, 374, 168–173.

    CAS  Google Scholar 

  13. Goldman, E.R., Anderson, G.P., Liu, J.L., Delehanty, J.B., Sherwood, L.J., Osborn, L.E., Cummins, L.B., & Hayhurst, A. (2006). Facile generation of heat-stable antiviral and antitoxin single domain antibodies from a semisynthetic llama library. Analytical Chemistry, 78, 8245–8255.

    CAS  Google Scholar 

  14. Halverson, K.M., Panchal, R.G., Nguyen, T.L., Gussio, R., Little, S.F., Misakian, M., Bavari, S., & Kasianowicz, J.J. (2005). Anthrax biosensor, protective antigen ion channel asymmetric blockade. The Journal of Biological Chemistry, 280, 34056–34062.

    CAS  Google Scholar 

  15. Jayasena, S.D. (1999). Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clinical Chemistry, 45, 1628–1650.

    CAS  Google Scholar 

  16. Bellah, M.M., Christensen, S. & Iqbal, S.M. (2012). Nanostructures for medical diagnostics. Journal of Nanomater

  17. Hu, Y., Fine, D.H., Tasciotti, E., Bouamrani, A., & Ferrari, M. (2011). Nanodevices in diagnostics. Wiley interdisciplinary reviews. Nanomedicine and Nanobiotechnology, 3, 11–32.

    CAS  Google Scholar 

  18. Young, J.A., & Collier, R.J. (2007). Anthrax toxin: receptor binding, internalization, pore formation, and translocation. Annual Review of Biochemistry, 76, 243–265.

    CAS  Google Scholar 

  19. Mourez, M. (2004). Anthrax toxins. Reviews of Physiology, Biochemistry and Pharmacology, 152, 135–164.

    CAS  Google Scholar 

  20. Rao, S.S., Mohan, K.V., & Atreya, C.D. (2010). Detection technologies for Bacillus anthracis: prospects and challenges. Journal of Microbiological Methods, 82, 1–10.

    CAS  Google Scholar 

  21. Kim, J., & Yoon, M.Y. (2010). Recent advances in rapid and ultrasensitive biosensors for infectious agents: lesson from Bacillus anthracis diagnostic sensors. The Analyst, 135, 1182–1190.

    CAS  Google Scholar 

  22. Irenge, L.M., & Gala, J.L. (2012). Rapid detection methods for Bacillus anthracis in environmental samples: a review. Applied Microbiology and Biotechnology, 93, 1411–1422.

    CAS  Google Scholar 

  23. Turnbull, P.C.B. (1999). Definitive identification of Bacillus anthracis—a review. Journal of Applied Microbiology, 87, 237–240.

    CAS  Google Scholar 

  24. Titball, R.W., Turnbull, P.C.B., & Hutson, R.A. (1991). The monitoring and detection of Bacillus anthracis in the environment. The Journal of Applied Bacteriology, 70, S9–S18.

    Google Scholar 

  25. Patra, G., Vaissaire, J., Weber-Levy, M., Le Doujet, C., & Mock, M. (1998). Molecular characterization of Bacillus strains involved in outbreaks of anthrax in France in 1997. Journal of Clinical Microbiology, 36, 3412–3414.

    CAS  Google Scholar 

  26. Owen, M.P., Schauwers, W., Hugh-Jones, M.E., Kiernan, J.A., Turnbull, P.C., & Beyer, W. (2013). A simple, reliable M'Fadyean stain for visualizing the Bacillus anthracis capsule. Journal of Microbiological Methods, 92, 264–269.

    CAS  Google Scholar 

  27. Inglesby, T.V., Henderson, D.A., Bartlett, J.G., Ascher, M.S., Eitzen, E., Friedlander, A.M., Hauer, J., McDade, J., Osterholm, M.T., O'Toole, T., Parker, G., Perl, T.M., Russell, P.K., Tonat, K., & Biodefense, W.G.C. (1999). Anthrax as a biological weapon––medical and public health management. JAMA Journal of the American Medical Association, 281, 1735–1745.

    CAS  Google Scholar 

  28. Richards, S.L., Pompei, V.C., & Anderson, A. (2014). BSL-3 laboratory practices in the United States: comparison of select agent and non-select agent facilities. Biosecurity and Bioterrorism, 12, 1–7.

    Google Scholar 

  29. Wielinga, P.R., de Heer, L., de Groot, A., Hamidjaja, R.A., Bruggeman, G., Jordan, K., & van Rotterdam, B.J. (2011). Evaluation of DNA extraction methods for Bacillus anthracis spores spiked to food and feed matrices at biosafety level 3 conditions. International Journal of Food Microbiology, 150, 122–127.

    CAS  Google Scholar 

  30. Zhang, D., Huarng, M.C., & Alocilja, E.C. (2010). A multiplex nanoparticle-based bio-barcoded DNA sensor for the simultaneous detection of multiple pathogens. Biosensors & Bioelectronics, 26, 1736–1742.

    CAS  Google Scholar 

  31. Pal, S., & Alocilja, E.C. (2010). Electrically active magnetic nanoparticles as novel concentrator and electrochemical redox transducer in Bacillus anthracis DNA detection. Biosensors & Bioelectronics, 26, 1624–1630.

    CAS  Google Scholar 

  32. Hurtle, W., Bode, E., Kulesh, D.A., Kaplan, R.S., Garrison, J., Bridge, D., House, M., Frye, M.S., Loveless, B., & Norwood, D. (2004). Detection of the Bacillus anthracis gyrA gene by using a minor groove binder probe. Journal of Clinical Microbiology, 42, 179–185.

    CAS  Google Scholar 

  33. Qi, Y.A., Patra, G., Liang, X. D., Williams, L. E., Rose, S., Redkar, R. J., & DelVecchio, V. G. (2001). Utilization of the rpoB gene as a specific chromosomal marker for real-time PCR detection of Bacillus anthracis. Applied and Environmental Microbiology, 67, 3720–3727.

    CAS  Google Scholar 

  34. Antwerpen, M.H., Zimmermann, P., Bewley, K., Frangoulidis, D., & Meyer, H. (2008). Real-time PCR system targeting a chromosomal marker specific for Bacillus anthracis. Molecular and Cellular Probes, 22, 313–315.

    CAS  Google Scholar 

  35. Olsen, J.S., Skogan, G., Fykse, E.M., Rawlinson, E.L., Tornaso, H., Granurn, P.E., & Blatny, J.M. (2007). Genetic distribution of 295 Bacillus cereus group members based on adk-screening in combination with MLST (Multilocus Sequence Typing) used for validating a primer targeting a chromosomal locus in B. anthracis. Journal of Microbiological Methods, 71, 265–274.

    CAS  Google Scholar 

  36. Hao, R.Z., Song, H.B., Zuo, G.M., Yang, R.F., Wei, H.P., Wang, D.B., Cui, Z.Q., Zhang, Z.P., Cheng, Z.X., & Zhang, X.E. (2011). DNA probe functionalized QCM biosensor based on gold nanoparticle amplification for Bacillus anthracis detection. Biosensors & Bioelectronics, 26, 3398–3404.

    CAS  Google Scholar 

  37. Kaittanis, C., Santra, S., Santiesteban, O.J., Henderson, T.J., & Perez, J.M. (2011). The assembly state between magnetic nanosensors and their targets orchestrates their magnetic relaxation response. Journal of the American Chemical Society, 133, 3668–3676.

    CAS  Google Scholar 

  38. Wielinga, P.R., Hamidjaja, R.A., Agren, J., Knutsson, R., Segerman, B., Fricker, M., Ehling-Schulz, M., de Groot, A., Burton, J., Brooks, T., Janse, I., & van Rotterdam, B. (2011). A multiplex real-time PCR for identifying and differentiating B. anthracis virulent types. International Journal of Food Microbiology, 145, S137–S144.

    CAS  Google Scholar 

  39. Fasanella, A., Losito, S., Trotta, T., Adone, R., Massa, S., Ciuchini, F., & Chiocco, D. (2001). Detection of anthrax vaccine virulence factors by polymerase chain reaction. Vaccine, 19, 4214–4218.

    CAS  Google Scholar 

  40. Merrill, L., Richardson, J., Kuske, C. R., & Dunbar, J. (2003). Fluorescent heteroduplex assay for monitoring Bacillus anthracis and close relatives in environmental samples. Applied and Environmental Microbiology, 69, 3317–3326.

    CAS  Google Scholar 

  41. Bell, C.A., Uhl, J.R., Hadfield, T.L., David, J.C., Meyer, R.F., Smith, T.F., & Cockerill, F.R., 3rd. (2002). Detection of Bacillus anthracis DNA by LightCycler PCR. Journal of Clinical Microbiology, 40, 2897–2902.

    CAS  Google Scholar 

  42. Christensen, D.R., Hartman, L.J., Loveless, B.M., Frye, M.S., Shipley, M.A., Bridge, D.L., Richards, M.J., Kaplan, R.S., Garrison, J., Baldwin, C.D., Kulesh, D.A., & Norwood, D.A. (2006). Detection of biological threat agents by real-time PCR: comparison of assay performance on the R.A.P.I.D., the LightCycler, and the Smart Cycler platforms. Clinical Chemistry, 52, 141–145.

    CAS  Google Scholar 

  43. Patra, G., Williams, L.E., Qi, Y., Rose, S., Redkar, R., & Delvecchio, V.G. (2002). Rapid genotyping of Bacillus anthracis strains by real-time polymerase chain reaction. Annals of the New York Academy of Sciences, 969, 106–111.

    CAS  Google Scholar 

  44. Adone, R., Pasquali, P., La Rosa, G., Marianelli, C., Muscillo, M., Fasanella, A., Francia, M., & Ciuchini, F. (2002). Sequence analysis of the genes encoding for the major virulence factors of Bacillus anthracis vaccine strain 'Carbosap'. Journal of Applied Microbiology, 93, 117–121.

    CAS  Google Scholar 

  45. Ellerbrok, H., Nattermann, H., Ozel, M., Beutin, L., Appel, B., & Pauli, G. (2002). Rapid and sensitive identification of pathogenic and apathogenic Bacillus anthracis by real-time PCR. FEMS Microbiology Letters, 214, 51–59.

    CAS  Google Scholar 

  46. Makino, S.I., Iinuma-Okada, Y., Maruyama, T., Ezaki, T., Sasakawa, C., & Yoshikawa, M. (1993). Direct detection of Bacillus anthracis DNA in animals by polymerase chain reaction. Journal of Clinical Microbiology, 31, 547–551.

    CAS  Google Scholar 

  47. Ramisse, V., Patra, G., Garrigue, H., Guesdon, J.L., & Mock, M. (1996). Identification and characterization of Bacillus anthracis by multiplex PCR analysis of sequences on plasmids pXO1 and pXO2 and chromosomal DNA. FEMS Microbiology Letters, 145, 9–16.

    CAS  Google Scholar 

  48. Hoffmaster, A.R., Ravel, J., Rasko, D.A., Chapman, G.D., Chute, M.D., Marston, C.K., De, B.K., Sacchi, C.T., Fitzgerald, C., Mayer, L.W., Maiden, M.C., Priest, F.G., Barker, M., Jiang, L., Cer, R.Z., Rilstone, J., Peterson, S. N., Weyant, R. S., Galloway, D. R., Read, T. D., Popovic, T., & Fraser, C. M. (2004). Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proceedings of the National Academy of Sciences of the United States of America, 101, 8449–8454.

    CAS  Google Scholar 

  49. Hoffmaster, A.R., Hill, K.K., Gee, J.E., Marston, C.K., De, B.K., Popovic, T., Sue, D., Wilkins, P.P., Avashia, S.B., Drumgoole, R., Helma, C.H., Ticknor, L.O., Okinaka, R.T., & Jackson, P.J. (2006). Characterization of Bacillus cereus isolates associated with fatal pneumonias: strains are closely related to Bacillus anthracis and harbor B. anthracis virulence genes. Journal of Clinical Microbiology, 44, 3352–3360.

    CAS  Google Scholar 

  50. Klee, S.R., Nattermann, H., Becker, S., Urban-Schriefer, M., Franz, T., Jacob, D., & Appel, B. (2006). Evaluation of different methods to discriminate Bacillus anthracis from other bacteria of the Bacillus cereus group. Journal of Applied Microbiology, 100, 673–681.

    CAS  Google Scholar 

  51. Kolsto, A.B..., Tourasse, N.J., & Okstad, O.A. (2009). What sets Bacillus anthracis apart from other Bacillus species? Annual Review of Microbiology, 63, 451–476.

    Google Scholar 

  52. Blackwood, K.S., Turenne, C.Y., Harmsen, D., & Kabani, A.M. (2004). Reassessment of sequence-based targets for identification of Bacillus species. Journal of Clinical Microbiology, 42, 1626–1630.

    CAS  Google Scholar 

  53. Radnedge, L., Agron, P.G., Hill, K.K., Jackson, P.J., Ticknor, L.O., Keim, P., & Andersen, G.L. (2003). Genome differences that distinguish Bacillus anthracis from Bacillus cereus and Bacillus thuringiensis. Applied and Environmental Microbiology, 69, 2755–2764.

    CAS  Google Scholar 

  54. Volokhov, D., Pomerantsev, A., Kivovich, V., Rasooly, A., & Chizhikov, V. (2004). Identification of Bacillus anthracis by multiprobe microarray hybridization. Diagnostic Microbiology and Infectious Disease, 49, 163–171.

    CAS  Google Scholar 

  55. Cherif, A., Borin, S., Rizzi, A., Ouzari, H., Boudabous, A., & Daffonchio, D. (2002). Characterization of a repetitive element polymorphism-polymerase chain reaction chromosomal marker that discriminates Bacillus anthracis from related species. Journal of Applied Microbiology, 93, 456–462.

    CAS  Google Scholar 

  56. Sacchi, C.T., Whitney, A.M., Mayer, L.W., Morey, R., Steigerwalt, A., Boras, A., Weyant, R.S., & Popovic, T. (2002). Sequencing of 16S rRNA gene: a rapid tool for identification of Bacillus anthracis. Emerging Infectious Diseases, 8, 1117–1123.

    CAS  Google Scholar 

  57. Duesbery, N.S., Webb, C.P., Leppla, S.H., Gordon, V.M., Klimpel, K.R., Copeland, T.D., Ahn, N.G., Oskarsson, M.K., Fukasawa, K., Paull, K.D., & Vande Woude, G.F. (1998). Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science, 280, 734–737.

    CAS  Google Scholar 

  58. Leppla, S.H. (1982). Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proceedings of the National Academy of Sciences of the United States of America, 79, 3162–3166.

    CAS  Google Scholar 

  59. Duriez, E., Goossens, P.L., Becher, F., & Ezan, E. (2009). Femtomolar detection of the anthrax edema factor in human and animal plasma. Analytical Chemistry, 81, 5935–5941.

    CAS  Google Scholar 

  60. Boyer, A.E., Quinn, C.P., Woolfitt, A.R., Pirkle, J.L., McWilliams, L.G., Stamey, K.L., Bagarozzi, D.A., Hart, J.C., Jr., & Barr, J.R. (2007). Detection and quantification of anthrax lethal factor in serum by mass spectrometry. Analytical Chemistry, 79, 8463–8470.

    CAS  Google Scholar 

  61. Kuklenyik, Z., Boyer, A.E., Lins, R., Quinn, C.P., Gallegos-Candela, M., Woolfitt, A., Pirkle, J.L., & Barr, J.R. (2011). Comparison of MALDI-TOF-MS and HPLC-ESI-MS/MS for endopeptidase activity-based quantification of Anthrax lethal factor in serum. Analytical Chemistry, 83, 1760–1765.

    CAS  Google Scholar 

  62. Capek, P., Kirkconnell, K.S., & Dickerson, T.J. (2010). A bacteriophage-based platform for rapid trace detection of proteases. Journal of the American Chemical Society, 132, 13126–13128.

    CAS  Google Scholar 

  63. Kaman, W.E., Hulst, A.G., van Alphen, P.T., Roffel, S., van der Schans, M.J., Merkel, T., van Belkum, A., & Bikker, F.J. (2011). Peptide-based fluorescence resonance energy transfer protease substrates for the detection and diagnosis of Bacillus species. Analytical Chemistry, 83, 2511–2517.

    CAS  Google Scholar 

  64. Ai, K.L., Zhang, B.H., & Lu, L.H. (2009). Europium-based fluorescence nanoparticle sensor for rapid and ultrasensitive detection of an anthrax biomarker. Angewandte Chemie, International Edition, 48, 304–308.

    CAS  Google Scholar 

  65. Zhang, X.Y., Zhao, J., Whitney, A.V., Elam, J.W., & Van Duyne, R.P. (2006). Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. Journal of the American Chemical Society, 128, 10304–10309.

    CAS  Google Scholar 

  66. De, B.K., Bragg, S.L., Sanden, G.N., Wilson, K.E., Diem, L.A., Marston, C.K., Hoffmaster, A.R., Barnett, G.A., Weyant, R.S., Abshire, T.G., Ezzell, J.W., & Popovic, T. (2002). A two-component direct fluorescent-antibody assay for rapid identification of Bacillus anthracis. Emerging Infectious Diseases, 8, 1060–1065.

    CAS  Google Scholar 

  67. Mwilu, S.K., Aluoch, A.O., Miller, S., Wong, P., & Sadik, O.A. (2009). Identification and quantitation of Bacillus globigii using metal enhanced electrochemical detection and capillary biosensor. Analytical Chemistry, 81, 7561–7570.

    CAS  Google Scholar 

  68. Zahavy, E., Heleg-Shabtai, V., Zafrani, Y., Marciano, D., & Yitzhaki, S. (2010). Application of fluorescent nanocrystals (q-dots) for the detection of pathogenic bacteria by flow-cytometry. Journal of Fluorescence, 20, 389–399.

    CAS  Google Scholar 

  69. McGovern, J.P., Shih, W.Y., & Shih, W.H. (2007). In situ detection of Bacillus anthracis spores using fully submersible, self-exciting, self-sensing PMN-PT/Sn piezoelectric microcantilevers. The Analyst, 132, 777–783.

    CAS  Google Scholar 

  70. Campbell, G.A., & Mutharasan, R. (2006). Piezoelectric-excited millimeter-sized cantilever (PEMC) sensors detect Bacillus anthracis at 300 spores/mL. Biosensors & Bioelectronics, 21, 1684–1692.

    CAS  Google Scholar 

  71. Davila, A.P., Jang, J., Gupta, A.K., Walter, T., Aronson, A., & Bashir, R. (2007). Microresonator mass sensors for detection of Bacillus anthracis Sterne spores in air and water. Biosensors & Bioelectronics, 22, 3028–3035.

    CAS  Google Scholar 

  72. Wang, D.B., Tian, B., Zhang, Z.P., Deng, J.Y., Cui, Z.Q., Yang, R.F., Wang, X.Y., Wei, H.P., & Zhang, X.E. (2013). Rapid detection of Bacillus anthracis spores using a super-paramagnetic lateral-flow immunological detection system. Biosensors & Bioelectronics, 42, 661–667.

    Google Scholar 

  73. Pal, S., & Alocilja, E.C. (2009). Electrically active polyaniline coated magnetic (EAPM) nanoparticle as novel transducer in biosensor for detection of Bacillus anthracis spores in food samples. Biosensors & Bioelectronics, 24, 1437–1444.

    CAS  Google Scholar 

  74. Wang, D.B., Bi, L.J., Zhang, Z.P., Chen, Y.Y., Yang, R.F., Wei, H.P., Zhou, Y.F., & Zhang, X.E. (2009). Label-free detection of B, anthracis spores using a surface plasmon resonance biosensor. The Analyst, 134, 738–742.

    CAS  Google Scholar 

  75. Hao, R.Z., Wang, D.B., Zhang, X.E., Zuo, G.M., Wei, H.P., Yang, R.F., Zhang, Z.P., Cheng, Z.X., Guo, Y.C., Cui, Z.Q., & Zhou, Y.F. (2009). Rapid detection of Bacillus anthracis using monoclonal antibody functionalized QCM sensor. Biosensors & Bioelectronics, 24, 1330–1335.

    CAS  Google Scholar 

  76. Biagini, R.E., Sammons, D.L., Smith, J.P., MacKenzie, B.A., Striley, C.A., Snawder, J.E., Robertson, S.A., & Quinn, C.P. (2006). Rapid, sensitive, and specific lateral-flow immunochromatographic device to measure anti-anthrax protective antigen immunoglobulin g in serum and whole blood. Clinical and Vaccine Immunology, 13, 541–546.

    CAS  Google Scholar 

  77. Tang, S.X., Moayeri, M., Chen, Z.C., Harma, H., Zhao, J.Q., Hu, H.J., Purcell, R.H., Leppla, S.H., & Hewlett, I.K. (2009). Detection of anthrax toxin by an ultrasensitive immunoassay using europium nanoparticles. Clinical and Vaccine Immunology, 16, 408–413.

    CAS  Google Scholar 

  78. Steichen, C., Chen, P., Kearney, J.F., & Turnbough, C.L. (2003). Identification of the immunodominant protein and other proteins of the Bacillus anthracis exosporium. Journal of Bacteriology, 185, 1903–1910.

    CAS  Google Scholar 

  79. Sylvestre, P., Couture-Tosi, E., & Mock, M. (2002). A collagen-like surface glycoprotein is a structural component of the Bacillus anthracis exosporium. Molecular Microbiology, 45, 169–178.

    CAS  Google Scholar 

  80. Daubenspeck, J.M., Zeng, H.D., Chen, P., Dong, S.L., Steichen, C.T., Krishna, N.R., Pritchard, D.G., & Turnbough, C.L. (2004). Novel oligosaccharide side chains of the collagen-like region of BclA, the major glycoprotein of the Bacillus anthracis exosporium. The Journal of Biological Chemistry, 279, 30945–30953.

    CAS  Google Scholar 

  81. Tamborrini, M., Werz, D.B., Frey, J., Pluschke, G., & Seeberger, P.H. (2006). Anti-carbohydrate antibodies for the detection of anthrax spores. Angewandte Chemie, International Edition, 45, 6581–6582.

    CAS  Google Scholar 

  82. Kuehn, A., Kovac, P., Saksena, R., Bannert, N., Klee, S.R., Ranisch, H., & Grunow, R. (2009). Development of antibodies against anthrose tetrasaccharide for specific detection of Bacillus anthracis spores. Clinical and Vaccine Immunology, 16, 1728–1737.

    CAS  Google Scholar 

  83. Fox, A., Black, G.E., Fox, K., & Rostovtseva, S. (1993). Determination of carbohydrate profiles of Bacillus anthracis and Bacillus cereus including identification of O-methyl methylpentoses by using gas-chromatography mass-spectrometry. Journal of Clinical Microbiology, 31, 887–894.

    CAS  Google Scholar 

  84. Fox, A., Stewart, G.C., Waller, L.N., Fox, K.F., Harley, W.M., & Price, R.L. (2003). Carbohydrates and glycoproteins of Bacillus anthracis and related bacilli: targets for biodetection. Journal of Microbiological Methods, 54, 143–152.

    CAS  Google Scholar 

  85. Tamborrini, M., Holzer, M., Seeberger, P.H., Schurch, N., & Pluschke, G. (2010). Anthrax spore detection by a luminex assay based on monoclonal antibodies that recognize anthrose-containing oligosaccharides. Clinical and Vaccine Immunology, 17, 1446–1451.

    CAS  Google Scholar 

  86. Guo, X., Peng, J.J., Yang, J.A., Peng, F., Yu, H., & Wang, H.J. (2009). Quantum dot-encoded beads for ultrasensitive detection. Recent Patents on Nanotechnology, 3, 192–202.

    CAS  Google Scholar 

  87. Mesnage, S., TosiCouture, E., Mock, M., Gounon, P., & Fouet, A. (1997). Molecular characterization of the Bacillus anthracis main S-layer component: evidence that it is the major cell-associated antigen. Molecular Microbiology, 23, 1147–1155.

    CAS  Google Scholar 

  88. Williams, D.D., & Turnbough, C.L., Jr. (2004). Surface layer protein EA1 is not a component of Bacillus anthracis spores but is a persistent contaminant in spore preparations. Journal of Bacteriology, 186, 566–569.

    CAS  Google Scholar 

  89. Ghosh, N., & Goel, A.K. (2012). Anti-protective antigen IgG enzyme-linked immunosorbent assay for diagnosis of cutaneous anthrax in India. Clinical and Vaccine Immunology, 19, 1238–1242.

    CAS  Google Scholar 

  90. Ghosh, N., Tomar, I., & Goel, A.K. (2013). A field usable qualitative anti-protective antigen enzyme-linked immunosorbent assay for serodiagnosis of human anthrax. Microbiology and Immunology, 57, 145–149.

    CAS  Google Scholar 

  91. Ghosh, N., Tomar, I., Lukka, H., & Goel, A.K. (2013). Serodiagnosis of human cutaneous anthrax in India using an indirect anti-lethal factor IgG enzyme-linked immunosorbent assay. Clinical and Vaccine Immunology, 20, 282–286.

    CAS  Google Scholar 

  92. Harrison, L.H., Ezzell, J.W., Abshire, T.G., Kidd, S., & Kaufmann, A.F. (1989). Evaluation of serologic tests for diagnosis of anthrax after an outbreak of cutaneous anthrax in Paraguay. The Journal of Infectious Diseases, 160, 706–710.

    CAS  Google Scholar 

  93. Quinn, C.P., Semenova, V.A., Elie, C.M., Romero-Steiner, S., Greene, C., Li, H., Stamey, K., Steward-Clark, E., Schmidt, D.S., Mothershed, E., Pruckler, J., Schwartz, S., Benson, R.F., Helsel, L.O., Holder, P.F., Johnson, S.E., Kellum, M., Messmer, T., Thacker, W.L., Besser, L., Plikaytis, B.D., Taylor, T.H., Jr., Freeman, A.E., Wallace, K.J., Dull, P., Sejvar, J., Bruce, E., Moreno, R., Schuchat, A., Lingappa, J.R., Martin, S.K., Walls, J., Bronsdon, M., Carlone, G.M., Bajani-Ari, M., Ashford, D.A., Stephens, D.S., & Perkins, B.A. (2002). Specific, sensitive, and quantitative enzyme-linked immunosorbent assay for human immunoglobulin G antibodies to anthrax toxin protective antigen. Emerging Infectious Diseases, 8, 1103–1110.

    CAS  Google Scholar 

  94. Rucker, V.C., Havenstrite, K.L., & Herr, A.E. (2005). Antibody microarrays for native toxin detection. Analytical Biochemistry, 339, 262–270.

    CAS  Google Scholar 

  95. Ngom, B., Guo, Y., Wang, X., & Bi, D. (2010). Development and application of lateral flow test strip technology for detection of infectious agents and chemical contaminants: a review. Analytical and Bioanalytical Chemistry, 397, 1113–1135.

    CAS  Google Scholar 

  96. Ghosh, N., Gupta, N., Gupta, G., Boopathi, M., Pal, V., & Goel, A.K. (2013). Detection of protective antigen, an anthrax specific toxin in human serum by using surface plasmon resonance. Diagnostic Microbiology and Infectious Disease, 77, 14–19.

    CAS  Google Scholar 

  97. Ghosh, N., Gupta, G., Boopathi, M., Pal, V., Singh, A.K., Gopalan, N., & Goel, A.K. (2013). Surface plasmon resonance biosensor for detection of Bacillus anthracis, the causative agent of anthrax from soil samples targeting protective antigen. Indian Journal of Microbiology, 53, 48–55.

    CAS  Google Scholar 

  98. Cohen, N., Mechaly, A., Mazor, O., Fisher, M., & Zahavy, E. (2014). Rapid homogenous time-resolved fluorescence (HTRF) immunoassay for anthrax detection. Journal of Fluorescence, 21(11), 1534–1540.

    Google Scholar 

  99. Buck, C.A., Eisenstark, A., Newman, F.S., & Anacker, R.L. (1963). Phage isolated from lysogenic Bacillus anthracis. Journal of Bacteriology, 85, 1423.

    CAS  Google Scholar 

  100. Watanabe, T., Morimoto, A., & Shiomi, T. (1975). The fine structure and the protein composition of gamma phage of Bacillus anthracis. Canadian Journal of Microbiology, 21, 1889–1892.

    CAS  Google Scholar 

  101. Schofield, D.A., & Westwater, C. (2009). Phage-mediated bioluminescent detection of Bacillus anthracis. Journal of Applied Microbiology, 107, 1468–1478.

    CAS  Google Scholar 

  102. Fujinami, Y., Hirai, Y., Sakai, I., Yoshino, M., & Yasuda, J. (2007). Sensitive detection of Bacillus anthracis using a binding protein originating from gamma-phage. Microbiology and Immunology, 51, 163–169.

    CAS  Google Scholar 

  103. Schuch, R., & Fischetti, V.A. (2009). The secret life of the anthrax agent Bacillus anthracis: bacteriophage-mediated ecological adaptations. PloS One, 4, e6532.

    Google Scholar 

  104. Schuch, R., Nelson, D., & Fischetti, V.A. (2002). A bacteriolytic agent that detects and kills Bacillus anthracis. Nature, 418, 884–889.

    CAS  Google Scholar 

  105. Huang, S., Yang, H., Lakshmanan, R.S., Johnson, M.L., Wan, J., Chen, I.H., Wikle, H.C., Petrenko, V.A., Barbaree, J.M., & Chin, B.A. (2009). Sequential detection of Salmonella typhimurium and Bacillus anthracis spores using magnetoelastic biosensors. Biosensors & Bioelectronics, 24, 1730–1736.

    CAS  Google Scholar 

  106. Petrenko, V.A. (2008). Landscape phage as a molecular recognition interface for detection devices. Microelectronics Journal, 39, 202–207.

    CAS  Google Scholar 

  107. Petrenko, V.A., & Smith, G.P. (2000). Phages from landscape libraries as substitute antibodies. Protein Engineering, 13, 589–592.

    CAS  Google Scholar 

  108. Petrenko, V.A., & Vodyanoy, V.J. (2003). Phage display for detection of biological threat agents. Journal of Microbiological Methods, 53, 253–262.

    CAS  Google Scholar 

  109. Sainathrao, S., Mohan, K.V.K. & Atreya, C. (2009). Gamma-phage lysin PlyG sequence-based synthetic peptides coupled with Qdot-nanocrystals are useful for developing detection methods for Bacillus anthracis by using its surrogates, B. anthracis-Sterne and B. cereus-4342. BMC Biotechnology 9.

  110. Kikkawa, H., Fujinami, Y., Suzuki, S.I., & Yasuda, J. (2007). Identification of the amino acid residues critical for specific binding of the bacteriolytic enzyme of gamma-phage, PlyG, to Bacillus anthracis. Biochemical and Biophysical Research Communications, 363, 531–535.

    CAS  Google Scholar 

  111. Acharya, G., Doorneweerd, D.D., Chang, C.L., Henne, W.A., Low, P.S., & Savran, C.A. (2007). Label-free optical detection of anthrax-causing spores. Journal of the American Chemical Society, 129, 732–733.

    CAS  Google Scholar 

  112. Park, H.Y., Go, H.Y., Kalme, S., Mane, R.S., Han, S.H., & Yoon, M.Y. (2009). Protective antigen detection using horizontally stacked hexagonal ZnO platelets. Analytical Chemistry, 81, 4280–4284.

    CAS  Google Scholar 

  113. Liu, B., & Zeng, H.C. (2003). Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. Journal of the American Chemical Society, 125, 4430–4431.

    CAS  Google Scholar 

  114. Guo, L., Ji, Y.L., Xu, H.B., Simon, P., & Wu, Z.Y. (2002). Regularly shaped, single-crystalline ZnO nanorods with wurtzite structure. Journal of the American Chemical Society, 124, 14864–14865.

    CAS  Google Scholar 

  115. McDonagh, C., Stranik, O., Nooney, R., & MacCraith, B.D. (2009). Nanoparticle strategies for enhancing the sensitivity of fluorescence-based biochips. Nanomedicine UK, 4, 645–656.

    CAS  Google Scholar 

  116. Cella, L.N., Sanchez, P., Zhong, W.W., Myung, N.V., Chen, W., & Mulchandani, A. (2010). Nano aptasensor for protective antigen toxin of anthrax. Analytical Chemistry, 82, 2042–2047.

    CAS  Google Scholar 

  117. Oh, B.N., Lee, S., Park, H.Y., Baeg, J.O., Yoon, M.Y., & Kim, J. (2011). Sensitive fluorescence assay of anthrax protective antigen with two new DNA aptamers and their binding properties. The Analyst, 136, 3384–3388.

    CAS  Google Scholar 

  118. Kim, D.J., Park, H.C., Sohn, I.Y., Jung, J.H., Yoon, O.J., Park, J.S., Yoon, M.Y., & Lee, N.E. (2013). Electrical graphene aptasensor for ultra-sensitive detection of anthrax toxin with amplified signal transduction. Small, 9, 3352–3360.

    CAS  Google Scholar 

  119. Huan, T.N., Ha, V.T.T., Hung, L.Q., Yoon, M.Y., Han, S.H., & Chung, H. (2009). Square wave voltammetric detection of Anthrax utilizing a peptide for selective recognition of a protein biomarker. Biosensors & Bioelectronics, 25, 469–474.

    CAS  Google Scholar 

  120. Farrow, B., Hong, S.A., Romero, E.C., Lai, B., Coppock, M.B., Deyle, K.M., Finch, A.S., Stratis-Cullum, D.N., Agnew, H.D., Yang, S., & Heath, J.R. (2013). A chemically synthesized capture agent enables the selective, sensitive, and robust electrochemical detection of anthrax protective antigen. ACS Nano, 7, 9452–9460.

    CAS  Google Scholar 

  121. Park, H.Y., Gedi, V., Kim, J., Park, H.C., Han, S.H., & Yoon, M.Y. (2011). Ultrasensitive diagnosis for an anthrax-protective antigen based on a polyvalent directed peptide polymer coupled to zinc oxide nanorods. Advanced Materials, 23, 5425.

    CAS  Google Scholar 

  122. Burbulis, I., Yamaguchi, K., Gordon, A., Carlson, R., & Brent, R. (2005). Using protein-DNA chimeras to detect and count small numbers of molecules. Nature Methods, 2, 31–37.

    CAS  Google Scholar 

  123. Bruno, J.G., & Kiel, J.L. (1999). In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection. Biosensors & Bioelectronics, 14, 457–464.

    CAS  Google Scholar 

  124. Proske, D., Blank, M., Buhmann, R., & Resch, A. (2005). Aptamers––basic research, drug development, and clinical applications. Applied Microbiology and Biotechnology, 69, 367–374.

    CAS  Google Scholar 

  125. Lauridsen, L.H., & Veedu, R.N. (2012). Nucleic acid aptamers against biotoxins: a new paradigm toward the treatment and diagnostic approach. Nucleic Acid Therapeutics, 22, 371–379.

    CAS  Google Scholar 

  126. Hamula, C.L.A., Zhang, H.Q., Li, F., Wang, Z.X., Le, X.C., & Li, X.F. (2011). Selection and analytical applications of aptamers binding microbial pathogens. Trac-Trends in Analytical Chemistry, 30, 1587–1597.

    CAS  Google Scholar 

  127. Tuerk, C., & Gold, L. (1990). Systematic evolution of ligands by exponential enrichment––Rna ligands to bacteriophage-T4 DNA-polymerase. Science, 249, 505–510.

    CAS  Google Scholar 

  128. Klug, S.J., & Famulok, M. (1994). All you wanted to know about selex. Molecular Biology Reports, 20, 97–107.

    CAS  Google Scholar 

  129. Choi, J.S., Kim, S.G., Lahousse, M., Park, H.Y., Park, H.C., Jeong, B., Kim, J., Kim, S.K., & Yoon, M.Y. (2011). Screening and characterization of high-affinity ssDNA aptamers against anthrax protective antigen. Journal of Biomolecular Screening, 16, 266–271.

    CAS  Google Scholar 

  130. Porcheddu, A., & Giacomelli, G. (2005). Peptide nucleic acids (PNAs), a chemical overview. Current Medicinal Chemistry, 12, 2561–2599.

    CAS  Google Scholar 

  131. Brandt, O., & Hoheisel, J.D. (2004). Peptide nucleic acids on microarrays and other biosensors. Trends in Biotechnology, 22, 617–622.

    CAS  Google Scholar 

  132. Zhang, N., & Appella, D.H. (2007). Colorimetric detection of anthrax DNA with a peptide nucleic acid sandwich-hybridization assay. Journal of the American Chemical Society, 129, 8424.

    CAS  Google Scholar 

  133. Adler, M., Wacker, R., & Niemeyer, C.M. (2008). Sensitivity by combination: immuno-PCR and related technologies. The Analyst, 133, 702–718.

    CAS  Google Scholar 

  134. Huston, J.S., Levinson, D., Mudgetthunter, M., Tai, M.S., Novotny, J., Margolies, M.N., Ridge, R.J., Bruccoleri, R.E., Haber, E., Crea, R., & Oppermann, H. (1988). Protein engineering of antibody-binding sites––recovery of specific activity in an anti-digoxin single-chain Fv analog produced in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 85, 5879–5883.

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Converging Research Center Program funded by the Ministry of Science, ICT & Future Planning (project no. 2013K000283) and by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST, no. 2012R1A1A1043987 to J.K.)

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moon-Young Yoon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Gedi, V., Lee, SC. et al. Advances in Anthrax Detection: Overview of Bioprobes and Biosensors. Appl Biochem Biotechnol 176, 957–977 (2015). https://doi.org/10.1007/s12010-015-1625-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1625-z

Keywords

Navigation