Skip to main content
Log in

Improving Performance and Operational Stability of Porcine Interferon-α Production by Pichia pastoris with Combinational Induction Strategy of Low Temperature and Methanol/Sorbitol Co-feeding

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Various induction strategies were investigated for effective porcine interferon-α (pIFN-α) production by Pichia pastoris in a 10 L fermenter. We found that pIFN-α concentration could be significantly improved with the strategies of low-temperature induction or methanol/sorbitol co-feeding. On this basis, a combinational strategy of induction at lower temperature (20 °C) with methanol/sorbitol co-feeding has been proposed for improvement of pIFN-α production. The results reveal that maximal pIFN-α concentration and antiviral activity reach the highest level of 2.7 g/L and 1.8 × 107 IU/mg with the proposed induction strategy, about 1.3–2.1 folds higher than those obtained with other sub-optimal induction strategies. Metabolic analysis and online multi-variable measurement results indicate that energy metabolic enrichment is responsible for the performance enhancement of pIFN-α production, as a large amount of ATP could be simultaneously produced from both formaldehyde oxidation pathway in methanol metabolism and tricarboxylic acid (TCA) cycle in sorbitol metabolism. In addition, the proposed combinational induction strategy enables P. pastoris to be resistant to high methanol concentration (42 g/L), which conceivably occur associating with the error-prone methanol over-feeding. As a result, the proposed combinational induction strategy simultaneously increased the targeted protein concentration and operational stability leading to significant improvement of pIFN-α production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cereghino, J. L., & Cregg, J. M. (2000). Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiology Reviews, 24, 45–66.

    Article  CAS  Google Scholar 

  2. Macauley-Patrick, S., Fazenda, M. L., McNeil, B., & Harvey, L. M. (2005). Heterologous protein production using the Pichia pastoris expression system. Yeast, 22, 249–270.

    Article  CAS  Google Scholar 

  3. Chinsangaram, J., Moraes, M. P., Koster, M., & Grubman, M. J. (2003). Novel viral disease control strategy: adenovirus expressing alpha interferon rapidly protects swine from foot-and-mouth disease. Joural of Virolory, 77, 1621–1625.

    Article  CAS  Google Scholar 

  4. Chang, H. W., Jeng, C. R., Liu, J. J., Lin, T. L., Chang, C. C., Chia, M. Y., Tsai, Y. C., & Pang, V. F. (2005). Reduction of porcine reproductive and respiratory syndrome virus (PRRSV) infection in swine alveolar macrophages by porcine circovirus 2 (PCV2)-induced interferon-alpha. Veterinary Microbiology, 108, 167–177.

    Article  CAS  Google Scholar 

  5. Cereghino, G. P., Cereghino, J. L., Ilgen, C., & Cregg, J. M. (2002). Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Current Opinion in Biotechnology, 13, 329–332.

    Article  Google Scholar 

  6. Ohya, T., Ohyama, M., & Kobayashi, K. (2006). Optimization of human serum albumin production in methylotrophic yeast Pichia pastoris by repeated fed-batch fermentation. Biotechnology and Bioengineering, 90, 876–887.

    Article  Google Scholar 

  7. Khatri, N. K., & Hoffmann, F. (2006). Impact of methanol concentration on secreted protein production in oxygen-limited cultures of recombinant Pichia pastoris. Biotechnology and Bioengineering, 93, 871–879.

    Article  CAS  Google Scholar 

  8. Gao, M. J., Zhan, X. B., Zheng, Z. Y., Wu, J. R., Dong, S. J., Li, Z., Shi, Z. P., & Lin, C. C. (2013). Enhancing pIFN-α production and process stability in fed-batch culture of Pichia pastoris by controlling the methanol concentration and monitoring the responses of OUR/DO levels. Applied Biochemistry and Biotechnology, 171, 1262–1275.

    Article  CAS  Google Scholar 

  9. Yu, R. S., Dong, S. J., Zhu, Y. M., Jin, H., Gao, M. J., Duan, Z. Y., Zheng, Z. Y., Shi, Z. P., & Li, Z. (2010). Effective and stable porcine interferon-α production by Pichia pastoris fed-batch cultivation with multi-variables clustering and analysis. Bioprocess and Biosystems Engineering, 33, 473–483.

    Article  CAS  Google Scholar 

  10. Jahic, M., Wallberg, F., Bollok, M., Garcia, P., & Enfors, S. (2003). Temperature limited fed-batch technique for control of proteolysis in Pichia pastoris bioreactor cultures. Microbial Cell Factories, 2(1), 6.

    Article  Google Scholar 

  11. Jin, H., Liu, G. Q., Ye, X. F., Duan, Z. Y., Li, Z., & Shi, Z. P. (2010). Enhanced porcine interferon-α production by recombinant Pichia pastoris with a combinational control strategy of low induction temperature and high dissolved oxygen concentration. Biochemical Engineering Journal, 52, 91–98.

    Article  CAS  Google Scholar 

  12. Dragosits, M., Stadlmann, J., Albiol, J., Baumann, K., Maurer, M., Gasser, B., Sauer, M., Altmann, F., Ferrer, P., & Mattanovich, D. (2009). The effect of temperature on the proteome of recombinant Pichia pastoris. Journal of Proteome Research, 8, 1380–1392.

    Article  CAS  Google Scholar 

  13. Wang, Y., Wang, Z. H., Xu, Q. L., Du, G. C., Hua, Z. Z., Liu, L. M., Li, J. H., & Chen, J. (2009). Lowering induction temperature for enhanced production of polygalacturonate lyase in recombinant Pichia pastoris. Process Biochemistry, 44, 949–954.

    Article  CAS  Google Scholar 

  14. Choi, D. B., & Park, E. Y. (2006). Enhanced production of mouse α-amylase by feeding combined nitrogen and carbon sources in fed-batch culture of recombinant Pichia pastoris. Process Biochemistry, 41, 390–397.

    Article  CAS  Google Scholar 

  15. Horstkotte, B., Arnau, C., Valero, F., Elsholz, O., & Cerdà, V. (2008). Monitoring of sorbitol in Pichia pastoris cultivation applying sequential injection analysis. Biochemical Engineering Journal, 42, 77–83.

    Article  CAS  Google Scholar 

  16. Çelik, E., Çalık, P., & Oliver, S. G. (2009). Fed-batch methanol feeding strategy for recombinant protein production by Pichia pastoris in the presence of co-substrate sorbitol. Yeast, 26, 473–484.

    Article  Google Scholar 

  17. Jungo, C., Schenk, J., Pasquier, M. M., Marison, I. W., & von Stockar, U. (2007). A quantitative analysis of the benefits of mixed feeds of sorbitol and methanol for production of recombinant avidin with Pichia pastoris. Journal of Biotechnology, 131, 57–66.

    Article  CAS  Google Scholar 

  18. Ramón, R., Ferrer, P., & Valero, F. (2007). Sorbitol co-feeding reduces metabolic burden caused by the overexpression of a Rhizopus oryzae lipase in Pichia pastoris. Journal Biotechnology, 130, 39–46.

    Article  Google Scholar 

  19. Gao, M. J., Li, Z., Yu, R. S., Wu, J. R., Zheng, Z. Y., Shi, Z. P., Zhan, X. B., & Lin, C. C. (2012). Methanol/sorbitol co-feeding induction enhanced porcine interferon-α production by P. pastoris associated with energy metabolism shift. Bioprocess and Biosystems Engineering, 35, 1125–1136.

    Article  CAS  Google Scholar 

  20. Zhu, T. C., You, L. J., Gong, F. Y., Xie, M. F., Xue, Y. F., Li, Y., & Ma, Y. Y. (2011). Combinatorial strategy of sorbitol feeding and low-temperature induction leads to high-level production of alkaline β-mannanase in Pichia pastoris. Enzyme and Microbial Technology, 49, 407–412.

    Article  CAS  Google Scholar 

  21. Tian, M. Y., Huitema, E., Da Cunha, L., Torto-Alalibo, T., & Kamoun, S. (2004). A Kazal-like extracellular serine protease inhibitor from Phytophthora infestans targets the tomato pathogenesis-related protease P69B. Journal of Biological Chemistry, 279, 26370–26377.

    Article  CAS  Google Scholar 

  22. Suye, S., Ogawa, A., Yokoyama, S., & Obayashi, A. (1990). Screening and identification of Candida methanosorbosa as alcohol oxidase-producing methanol using yeast. Agricultural and Biological Chemistry, 54, 1297–1298.

    Article  CAS  Google Scholar 

  23. Schütte, H., Flossdorf, J., Sahm, H., & Kula, M. R. (1976). Purification and properties of formaldehyde dehydrogenase and formate dehydrogenase from Candida boidinii. European Journal of Biochemistry, 62, 151–160.

    Article  Google Scholar 

  24. Gao, M. J., Zheng, Z. Y., Wu, J. R., Dong, S. J., Li, Z., Jin, H., Zhan, X. B., & Lin, C. C. (2012). Improvement of specific growth rate of Pichia pastoris for effective porcine interferon-α production with an on-line model based glycerol feeding strategy. Applied Microbiology and Biotechnology, 93, 1437–1445.

    Article  CAS  Google Scholar 

  25. Jungo, C., Marison, I., & Von Stockar, U. (2007). Regulation of alcohol oxidase of a recombinant Pichia pastoris Mut+ strain in transient continuous cultures. Journal of Biotechnology, 130, 236–246.

    Article  CAS  Google Scholar 

  26. Trinh, L. B., Phue, J. N., & Shiloach, J. (2003). Effect of methanol feeding strategies on production and yield of recombinant mouse endostatin from Pichia pastoris. Biotechnology and Bioengineering, 82, 438–444.

    Article  CAS  Google Scholar 

  27. Lim, H. K., Choi, S. J., Kim, K. Y., & Jung, K. H. (2003). Dissolved-oxygen-stat controlling two variables for methanol induction of rGuamerin in Pichia pastoris and its application to repeated fed-batch. Applied Microbiology and Biotechnology, 62, 342–348.

    Article  CAS  Google Scholar 

  28. Khatri, N. K., & Hoffmann, F. (2006). Oxygen-limited control of methanol uptake for improved production of a single-chain antibody fragment with recombinant Pichia pastoris. Applied Microbiology and Biotechnology, 72, 492–498.

    Article  CAS  Google Scholar 

  29. Çelik, E., & Çalık, P. (2012). Production of recombinant proteins by yeast cells. Biotechnology Advances, 30, 1108–1118.

    Article  Google Scholar 

  30. Lüers, G. H., Advani, R., Wenzel, T., & Subramani, S. (1998). The Pichia pastoris dihydroxyacetone kinase is a PTS1-containing, but cytosolic, protein that is essential for growth on methanol. Yeast, 14, 759–771.

    Article  Google Scholar 

  31. Van der Klei, I. J., Yurimoto, H., Sakai, Y., & Veenhuis, M. (2006). The significance of peroxisomes in methanol metabolism in methylotrophic yeast. Biochimica et Biophysica Acta, 12, 1453–1462.

    Article  Google Scholar 

  32. Krainer, F. W., Dietzsch, C., Hajek, T., Herwig, C., Spadiut, O., & Glieder, A. (2012). Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway. Microbial Cell Factories, 11, 22.

    Article  CAS  Google Scholar 

  33. Schroer, K., Peter, L. K., Hartner, F. S., Glieder, A., & Pscheidt, B. (2010). Engineering the Pichia pastoris methanol oxidation pathway for improved NADH regeneration during whole-cell biotransformation. Metabolic Engineering, 12, 8–17.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the financial supports from National Natural Science Foundation of China (#31301408), Natural Science Foundation of Jiangsu Province (#BK20130122), China Postdoctoral Science Foundation (#2014 M551501), a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,the 111 Project (No. 111-2-06),and the Jiangsu province “Collaborative Innovation Center for Advanced Industrial Fermentation” industry development program.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Bei Zhan or Chi-Chung Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, MJ., Zhan, XB., Gao, P. et al. Improving Performance and Operational Stability of Porcine Interferon-α Production by Pichia pastoris with Combinational Induction Strategy of Low Temperature and Methanol/Sorbitol Co-feeding. Appl Biochem Biotechnol 176, 493–504 (2015). https://doi.org/10.1007/s12010-015-1590-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1590-6

Keywords

Navigation