Skip to main content
Log in

Calcium Mobilization in Salicylic Acid-Induced Salvia miltiorrhiza Cell Cultures and Its Effect on the Accumulation of Rosmarinic Acid

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Ca2+ serves as a second messenger in plant responses to different signals, and salicylic acid (SA) has been recognized as a signal mediating plant responses to many stresses. We recently found that SA treatment led to the cytoplasmic acidification of Salvia miltiorrhiza cells and alkalinization of extracellular medium. Here, we demonstrate that SA can rapidly induce Ca2+ mobilization in protoplasts, but the induction can be blocked with a channel blocker of either plasma or organellar membranes. Following SA, A 23187, or 10 mmol/L Ca2+ treatment, rosmarinic acid (RA) accumulation reached the highest level at 16 h, whereas the peak was found at 10 h if plasma membrane channel blockers were used. By contrast, the highest accumulation of RA occurred at 16 h when organellar channels were blocked, exhibiting the same tendency with SA-induced cells. In agreement with these observations, both phenylalanine ammonia-lyase (PAL) activity and its gene expression detected by real-time PCR also showed the same patterns. These results indicate that SA treatment firstly results in calcium release from internal stores, which in turn leads to PAL activity increase, RA accumulation, and a large amount of Ca2+ influx from apoplast after 10 h of SA induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chandra, S., & Chandra, R. (2011). Engineering secondary metabolite production in hairy roots. Phytochemistry Review, 10, 371–395.

    Article  CAS  Google Scholar 

  2. Kai, G., Xu, H., Zhou, C., Liao, P., Xiao, J., Luo, X., You, L., & Zhang, L. (2011). Metabolic engineering tanshinone biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. Metabolic Engineering, 13, 319–327.

    Article  CAS  Google Scholar 

  3. Yan, Q., Shi, M., Ng, J., & Wu, J. Y. (2006). Elicitor-induced rosmarinic acid accumulation and secondary metabolism enzyme activities in Salvia miltiorrhiza hairy roots. Plant Science, 170, 853–858.

    Article  CAS  Google Scholar 

  4. Zhang, Y., Yan, Y. P., Wu, Y. C., Hua, W. P., Chen, C., Ge, Q., & Wang, Z. Z. (2014). Pathway engineering for phenolic acid accumulation in Salvia miltiorrhiza by combinational genetic manipulation. Metabolic Engineering, 21, 71–80.

    Article  Google Scholar 

  5. Dong, J., Wan, G., & Liang, Z. (2010). Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. Journal of Biotechnology, 148, 99–104.

    Article  CAS  Google Scholar 

  6. Vicente, M. R. S., & Plasencia, J. (2011). Salicylic acid beyond defence: its role in plant growth and development. Journal of Experimental Botany, 62, 3321–3338.

    Article  Google Scholar 

  7. Vijaya, S. N., Udayasri, P., Aswani Kumar, V. V. V., Ravi, B. B., Phani, K. Y., & Vijay, V. M. (2010). Advancements in the production of secondary metabolites. Journal of Natural Products, 3, 112–123.

    Google Scholar 

  8. Durrant, W. E., & Dong, X. (2004). Systemic acquired resistance. Annual Review of Phytopathology, 24, 185–209.

    Article  Google Scholar 

  9. Shah, J. (2003). The salicylic acid loop in plant defense. Current Opinion on Plant Biology, 6, 365–371.

    Article  CAS  Google Scholar 

  10. Vlot, A. C., Dempsey, D. M. A., & Klessing, D. F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Nature Review of Phytopathology, 47, 177–206.

    Article  CAS  Google Scholar 

  11. Batistič, O., & Kudla, J. (2012). Analysis of calcium signaling pathways in plants. Biochimica et Biophysia Acta, 1820, 1283–1293.

    Article  Google Scholar 

  12. Dodd, A. N., Kudla, J., & Sanders, D. (2010). The language of calcium signaling. Annual Review of Plant Biology, 61, 593–620.

    Article  CAS  Google Scholar 

  13. Kudla, J., Batistič, O., & Hashimoto, K. (2010). Calcium signals: the lead currency of plant information processing. Plant Cell, 22, 541–563.

    Article  CAS  Google Scholar 

  14. Sanders, D., Brownlee, C., & Harper, J. F. (1999). Communicating with calcium. Plant Cell, 11, 691–706.

    Article  CAS  Google Scholar 

  15. Petersen, M., & Simmonds, M. S. J. (2003). Rosmarinic acid. Phytochemistry, 62, 121–125.

    Article  CAS  Google Scholar 

  16. Knight, M. R., Smith, S. M., & Trewavas, A. J. (1992). Wind-induced plant motion immediately increases cytosolic calcium. Proceedings of National Academy of Science of the United States of America, 89, 4967–4971.

    Article  CAS  Google Scholar 

  17. Song, J., & Wang, Z. Z. (2009). Molecular cloning, expression and characterization of a phenylalanine ammonia-lyase gene (SmPAL1) from Salvia miltiorrhiza. Molecular Biology Reports, 36, 939–952.

    Article  CAS  Google Scholar 

  18. Sticher, L., Mauch-Mani, B., & Métreaux, J. P. (1997). Systemic acquired resistance. Annual Review of Phytopathology, 35, 235–270.

    Article  CAS  Google Scholar 

  19. Van Camp, W., Van Montagu, M., & Inzé, D. (1998). H2O2 and NO: redox signals in disease resistance. Trend in Plant Science, 3, 330–334.

    Article  Google Scholar 

  20. Chen, H., Liu, L., Dong, J., & Xia, G. (2012). Hydrogen peroxide is involved in the signal transduction of salicylic acid-induced salvianolic acid B biosynthesis in Salvia miltiorrhiza cell cultures. Chinese Journal of Biotechnology, 28, 834–846.

    CAS  Google Scholar 

  21. Guo, B., Liang, Y. C., Zhu, Y. G., & Zhao, F. J. (2007). Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. Environmental Pollution, 147, 743–749.

    Article  CAS  Google Scholar 

  22. Taguchi, G., Yazawa, T., Hayashida, N., & Okazaki, M. (2001). Molecular cloning and heterologous expression of novel glucosyltransferases from tobacco cultured cells that have broad substrates specificity and are induced by salicylic acid and auxin. European Journal of Biochemistry, 268, 4086–4094.

    Article  CAS  Google Scholar 

  23. Zhao, J., Davis, L. C., & Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advance, 23, 283–333.

    Article  CAS  Google Scholar 

  24. Mikkelsen, M. D., Petersen, B. L., Glawischnig, E., Jensen, A. B., Andreasson, E., & Halkier, B. A. (2003). Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways. Plant Physiology, 131, 298–308.

    Article  CAS  Google Scholar 

  25. Bulgakov, V. P., Tchernoded, G. K., Mischenko, N. P., Khodakovskaya, M. V., Glazunov, V. P., Radchenko, S. V., Zvereva, E. V., Fedoreyev, S. A., & Zhuravlev, Y. N. (2002). Effect of salicylic acid, methyl jasmonate, ethephon and cantharidin on anthraquinone production by Rubia cordifolia callus cultures transformed with rol B and rol C genes. Journal of Biotechnology, 97, 213–221.

    Article  CAS  Google Scholar 

  26. Pitta-Alvarez, S. I., Spollansky, T. C., & Giulietti, A. M. (2000). The influence of different biotic and abiotic elicitors on the production and profile of tropane alkoids in hairy root cultures of Brugmansia candida. Enzyme and Microbiology Technology, 26, 252–258.

    Article  CAS  Google Scholar 

  27. Peiter, E. (2011). The plant vacuole: emitter and receiver of calcium signals. Cell Calcium, 50, 120–128.

    Article  CAS  Google Scholar 

  28. Trewavas, A. J., & Malho, R. (1998). Ca2+ signalling in plant cells: the big network! Current Opinion in Plant Biology, 1, 428–433.

    Article  CAS  Google Scholar 

  29. Halliwell, B., & Gutteridge, J. (1999). Free radicals in biology and medicine (3rd ed., p. 936). Oxford: Oxford University Press.

    Google Scholar 

  30. Pei, Z., Murata, Y., Benning, G., Thomine, S., Kluesener, B., Allen, G. J., Grill, E., & Schroeder, J. I. (2000). Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature, 406, 731–734.

    Article  CAS  Google Scholar 

  31. Smith, C. J. (1994). Signal transduction in elicitation of phytoalexin synthesis. Biochemical Society Transactions, 22, 414–419.

    CAS  Google Scholar 

  32. Lecourieux, D., Mazars, C., Pauly, N., Ranjeva, R., & Pugin, A. (2002). Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells. Plant Cell, 14, 2627–2641.

    Article  CAS  Google Scholar 

  33. Armero, J., & Tena, M. (2001). Possible role of plasma membrane H+-ATPase in the elicitation of phytolexion and related isoflavone root secretion in chickpea (Cicer arietinum L.) seedlings. Plant Science, 161, 791–798.

    Article  CAS  Google Scholar 

  34. Boller, T. (1995). Chemoperception of microbial signals in plant cells. Annual Review of Plant Physiology and Plant Molecular Biology, 46, 189–214.

    Article  CAS  Google Scholar 

  35. Liu, L., Wang, C., Dong, J., Su, H., Zhuo, Z. Q., & Xue, Y. X. (2013). Effect of calcium on medium alkalinization induced by salicylic acid in Salvia miltiorrhiza suspension cultures. Chinesis Journal of Biotechnology, 29, 986–997.

    CAS  Google Scholar 

  36. Sakano, K. (2001). Metabolic regulation of pH in plant cells: role of cytoplasmic pH in defense reaction and secondary metabolism. International Review of Cytology, 206, 1–44.

    Article  CAS  Google Scholar 

  37. Hattori, T., & Ohta, Y. (1985). Induction of phenylalanine ammonia-lyase activation and isoflavone glucoside accumulation in suspension-cultured cells of red bean, Vigna angularis, by phytoalexins elicitors, vanadate and elevation of medium pH. Plant Cell and Physiology, 26, 1101–1110.

    CAS  Google Scholar 

  38. Hagendoorn, M. J. M., Traas, T. P., Boon, J. J., & van der Plas, L. H. W. (1990). Orthovanadate induced lignin production, in batch and continuous cultures of Petunia hybrida. Journal of Plant Physiology, 137, 72–80.

    Article  CAS  Google Scholar 

  39. Van der Luit, A. H., Olivari, C., Haley, A., Knight, M. R., & Trewavas, A. J. (1999). Distinct calcium signaling pathways regulate calmodulin gene expression in tobacco. Plant Physiology, 121, 705–714.

    Article  Google Scholar 

  40. Blume, B., Nurnberger, T., Nass, N., & Scheel, D. (2000). Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell, 12, 1425–1440.

    Article  CAS  Google Scholar 

  41. Vasconsuelo, A., Morelli, S., Picotto, G., Giulietti, A. M., & Boland, R. (2005). Intracellular calcium mobilization: a key step for chitosan-induced anthraquinone production in Rubia tinctorum L. Plant Science, 169, 712–720.

    Article  CAS  Google Scholar 

  42. McAinsh, M. R., Brownlee, C., & Hetherington, A. M. (1992). Visualising changes in cytosolic Ca2+ during the response to stomal guard cells to abscisic acid. Plant Cell, 4, 1113–1122.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 31170274) and Academic Backbone Youth of Northwest A&F University (No. Z111020906).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juane Dong.

Additional information

Hongbo Guo and Nan Zhu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Zhu, N., Deyholos, M.K. et al. Calcium Mobilization in Salicylic Acid-Induced Salvia miltiorrhiza Cell Cultures and Its Effect on the Accumulation of Rosmarinic Acid. Appl Biochem Biotechnol 175, 2689–2702 (2015). https://doi.org/10.1007/s12010-014-1459-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1459-0

Keywords

Navigation