Skip to main content
Log in

Endogenous salicylic acid accumulation is required for chilling tolerance in cucumber (Cucumis sativus L.) seedlings

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Salicylic acid (SA) is an important plant hormone, and its exogenous application can induce tolerance to multiple environmental stresses in plants. In this study, we examine the potential involvement of endogenous SA in response to chilling in cucumber (Cucumis sativus L.) seedlings. A low temperature of 8 °C induces a moderate increase in endogenous SA levels. Chilling stimulates the enzymatic activities and the expression of genes for phenylalanine ammonia-lyase (PAL) and benzoic acid-2-hydroxylase rather than isochorismate synthase. This indicates that the PAL enzymatic pathway contributes to chilling-induced SA production. Cucumber seedlings pretreated with SA biosynthesis inhibitors accumulate less endogenous SA and suffer more from chilling damage. The expression of cold-responsive genes is also repressed by SA inhibitors. The reduction in stress tolerance and in gene expression can be restored by the exogenous application of SA, confirming the critical roles of SA in chilling responses in cucumber seedlings. Furthermore, the inhibition of SA biosynthesis under chilling stress results in a prolonged and enhanced hydrogen peroxide (H2O2) accumulation. The application of exogenous SA and the chemical scavenger of H2O2 reduces the excess H2O2 and alleviates chilling injury. In contrast, the protective effects of SA are negated by foliar spraying with high concentrations of H2O2 and an inhibitor of the antioxidant enzyme. These results suggest that endogenous SA is required in response to chilling stress in cucumber seedlings, by modulating the expression of cold-responsive genes and the precise induction of cellular H2O2 levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

3-AT:

3-Amino-1,2,4-triazole

AOPP:

l-α-Aminooxy-β-phenylpropionic acid

APX:

Ascorbate peroxidase

BA:

Benzoic acid

BA2H:

Benzoic acid 2-hydroxylase

CA:

Carbonic anhydrase

cAPX:

Cytosolic APX

CAT:

Catalase

CBF:

C-repeat binding factor

COR47 :

Cold-regulated 47

DMTU:

Dimethylthiourea

ETR:

Electron transport rate

GA:

Gibberellin

GA2ox:

GA 2-oxidase

GA20ox:

GA 20-oxidase

ICS:

Isochorismate synthase

MDA:

Malondialdehyde

P5CS:

Delta 1-pyrroline-5-carboxylate synthase

P5CR:

Pyrroline-5-carboxylate reductase

PAC:

Paclobutrazol

PAL:

Phenylalanine-ammonia-lyase

PR :

Pathogenesis-related

RAB18 :

Responsive to ABA 18

RbcS:

Ribulose-1,5-bisphosphate carboxylase oxygenase small subunit

SA:

Salicylic acid

SAG:

SA O-β-glucoside

SOD:

Superoxide dismutase

SuSy:

Sucrose synthase

UPLC:

Ultra-performance liquid chromatography

References

  • Adams-Phillips L, Briggs AG, Bent AF (2010) Distribution of poly(ADP-ribosyl) action mechanisms alters responses of Arabidopsis to biotic stress. Plant Physiol 152:267–280

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bandurska H, Stroiński A (2005) The effect of salicylic acid on barley response to water deficit. Acta Physiol Plant 27:379–386

    Article  CAS  Google Scholar 

  • Butcher DN, Clark JA, Lenton JR (1990) Gibberellins and the growth of excised tomato roots: comparison of gib-1 mutant and wild type and responses to applied GA3 and 2S, 3S paclobutrazol. J Exp Bot 41:715–722

    Article  CAS  Google Scholar 

  • Dat JF, Foyer CH, Scott IM (1998) Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiol 118:1455–1461

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dean JV, Mohammed LA, Fitzpatrick T (2005) The formation, vacuolar localization, and tonoplast transport of salicylic acid glucose conjugates in tobacco cell suspension cultures. Planta 221:287–296

    Article  PubMed  CAS  Google Scholar 

  • Dempsey DMA, Vlot AC, Wildermuth MC, Klessig DF (2011) Salicylic acid biosynthesis and metabolism. Arabidopsis Book 9:e0156

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding CK, Wang CY, Gross KC, Smith DL (2002) Jasmonate and salicylate induce the expression of pathogenesis-related-protein genes and increase resistance to chilling injury in tomato fruit. Planta 214:895–901

    Article  PubMed  CAS  Google Scholar 

  • Durrant WE, Dong XN (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  PubMed  CAS  Google Scholar 

  • Gémes K, Poór P, Horváth E, Kolbert Z, Szopko D, Szepesi A, Tari I (2011) Cross-talk between salicylic acid and NaCl-generated reactive oxygen species and nitric oxide in tomato during acclimation to high salinity. Physiol Plant 142:179–192

    Article  PubMed  Google Scholar 

  • Ghai N, Setia RC, Setia N (2002) Effects of paclobutrazol and salicylic acid on chlorophyll content, hill activity and yield components in Brassica napus L. (cv. GSL-1). Phytomorphol 52:83–87

    Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hu S, Jiang H, Li Y (2013) Effects of PAL and ICS on the production of total flavonoids, daidzein and puerarin in Pueraria thomsonii Benth. suspension cultures under low light stress. J Plant Biochem. doi:10.1007/s13562-013-0233-7

    Google Scholar 

  • Jakab G, Ton J, Flors V, Zimmerli L, Métraux JP, Mauch-Mani B (2005) Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiol 139:267–274

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Janda T, Szalai G, Tari I, Paldi E (1999) Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta 208:175–180

    Article  CAS  Google Scholar 

  • Kang HM, Saltveit ME (2002) Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiol Plant 115:571–576

    Article  PubMed  CAS  Google Scholar 

  • Kawai-Yamada M, Ohori Y, Uchimiya H (2004) Dissection of Arabidopsis Bax Inhibitor-1 suppressing bax-, hydrogen peroxide-, and salicylic acid-induced cell death. Plant Cell 16:21–32

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kim Y, Park S, Gilmour SJ, Thomashow MF (2013) Roles of CAMTA transcription factors and salicylic acid in configuring the low temperature transcriptome and freezing tolerance of Arabidopsis. Plant J 75:364–376

    Article  PubMed  CAS  Google Scholar 

  • Kosova K, Prasil IT, Vitamvas P, Dobrev P, Motyka V, Flokova K, Novak O, Tureckova V, Rolcik J, Pesek B, Travnickova A, Gaudinova A, Galiba G, Janda T, Vlasakova E, Prasilova P, vankova R (2012) Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra. J Plant Physiol 169:567–576

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Nam J, Park HC, Na G, Miura K, Jin JB, Yoo CY, Baek D, Kim DH, Jeong JC, Kim D, Lee SY, Salt DE, Mengiste T, Gong Q, Ma S, Bohnert HJ, Kwak SS, Bressan RA, Haseqawa PM, Yun DJ (2007) Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase. Plant J 49:79–90

  • Lee S, Kim SG, Park CM (2010) Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytol 188:626–637

    Article  PubMed  CAS  Google Scholar 

  • León J, Lawton MA, Raskin I (1995) Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco. Plant Physiol 108:1673–1678

    PubMed  PubMed Central  Google Scholar 

  • Li J, Besseau S, Toronen P, Siparit N, Kollist H, Holm L, Palva ET (2013) Defense-related transcription factors WRKY70 and WRKY54 modulate osmotic stress tolerance by regulating stomatal aperture in Arabidopsis. New Phytol 200:457–472

  • Liu HT, Liu YY, Pan QH, Yang HR, Zhan JC, Huang WD (2006) Novel interrelationship between salicylic acid, abscisic acid, and PIP2-specific phospholipase C in heat acclimation-induced thermotolerance in pea leaves. J Exp Bot 57:3337–3347

    Article  PubMed  CAS  Google Scholar 

  • Martinez CA, Loureiro ME, Oliva MA, Maestri M (2001) Differential responses of superoxide dismutase in freezing resistant Solanum curtilobum and freezing sensitive Solanum tuberosum subjected to oxidative and water stress. Plant Sci 160:505–515

    Article  PubMed  CAS  Google Scholar 

  • Min YK, Asami T, Fujioka S, Murofushi N, Yamaguchi I, Yoshida S (1999) New lead compounds for brassinosteroids biosynthesis inhibitors. Bioorg Med Chem Lett 9:425–430

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Ohta M (2010) SIZ1, a small ubiquitin-related modifier ligase, controls cold signaling through regulation of salicylic acid accumulation. J Plant Physiol 167:555–560

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Tada Y (2014) Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci 5:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Miura K, Jin JB, Lee Y, Yoo CY, Stirm V, Miura T, Ashworth EN, Bressan RA, Yun DJ, Hasegawa PM (2007) SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19:1403–1414

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Miura K, Okamoto H, Okuma E, Shiba H, Kamada H, Hasegawa PM, Murata Y (2013) SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. Plant J 49:79–90

    Google Scholar 

  • Munné-Bosch S, Penuelas J (2003) Photo- and antioxidative protection, and a role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants. Planta 217:758–766

    Article  PubMed  Google Scholar 

  • Pál M, Horváth E, Janda T, Páldi E, Szalai G (2005) Cadmium stimulates the accumulation of salicylic acid and its putative precursors in maize (Zea mays) plants. Physoil Plant 125:356–364

  • Pál M, Szalai G, Kovács V, Gondor OK, Janda T (2013) Salicylic acid-mediated abiotic stress tolerance. In: Ahmad A, Alyemeni MN, Hayat S (eds) Salicylic acid. Springer, Netherlands, pp 183–247

    Chapter  Google Scholar 

  • Pan Q, Zhan J, Liu H, Zhang J, Chen J, Wen P, Huang W (2006) Salicylic acid synthesized by benzoic acid 2-hydroxylase participates in the development of thermotolerance in pea plants. Plant Sci 171:226–233

    Article  CAS  Google Scholar 

  • Pan H, Wang Y, Zhang Y, Zhou T, Fang C, Nan P, Wang X, Li X, Wei Y, Chen J (2008) Phenylalanine ammonia lyase functions as a switch directly controlling the accumulation of calycosin and calycosin-7-O-beta-d-glucoside in Astragalus membranaceus var. mongholicus plants. J Exp Bot 59:3027–3037

    Article  PubMed  CAS  Google Scholar 

  • Petrov VD, Van Breusegem F (2012) Hydrogen peroxide—a central hub for information flow in plant cells. AoB Plants 2012:pls014

  • Rate DN, Cuenca JV, Bowman GR, Guttman DS, Greenberg JT (1999) The gain-of-function Arabidopsis acd6 mutant reveals novel regulation and function of the salicylic acid signaling pathway in controlling cell death, defenses, and cell growth. Plant Cell 11:1695–1708

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ren CG, Dai CC (2012) Jasmonic acid is involved in the signaling pathway for fungal endophyte-induced volatile oil accumulation of Atractylodes lancea plantlets. BMC Plant Biol 12:128

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sawada H, Shim I-S, Usui K (2006) Induction of benzoic acid 2-hydroxylase and salicylic acid biosynthesis: modulation by salt stress in rice seedlings. Plant Sci 171:263–270

    Article  CAS  Google Scholar 

  • Scott IM, Clarke SM, Wood JE, Mur LAJ (2004) Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. Plant Physiol 135:1040–1049

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Senaratna T, Touchell D, Bunn E, Dixon K (2000) Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul 30:157–161

    Article  CAS  Google Scholar 

  • Seo PJ, Xiang F, Qiao M, Park JY, Lee YN, Kim SG, Lee YH, Park WJ, Park CM (2009) The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physoil 151:275–289

  • Shang QM, Li L, Dong CJ (2012) Multiple tandem duplication of the phenylalanine ammonia-lyase genes in Cucumis sativus L. Planta 236:1093–1105

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126:45–51

    Article  CAS  Google Scholar 

  • Tasgin E, Atici O, Nalbantoglu B (2003) Effects of salicylic acid and cold on freezing tolerance in winter wheat leaves. Plant Growth Regul 41:231–236

    Article  CAS  Google Scholar 

  • Theocharis A, Clément C, Barka EA (2012) Physiological and molecular changes in plants grown at low temperatures. Planta 235:1091–1105

    Article  PubMed  CAS  Google Scholar 

  • Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11:1187–1194

    Article  CAS  Google Scholar 

  • Todesco M, Balasubramanian S, Hu TT, Traw MB, Horton M, Epple P, Kuhns C, Sureshkumar S, Schwartz C, Lanz C, Laitinen RA, Huang Y, Chory J, Lipka V, Borevitz JO, Dangl JL, Bergelson J, Nordborg M, Weigel D (2010) Natural allelic variation underlying a major fitness trade-off in Arabidopsis thaliana. Nature 465:632–636

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Verslues PE, Sharma S (2010) Proline metabolism and its implications for plant-environment interaction. Arabidopsis Book 8:e0140

    Article  PubMed  PubMed Central  Google Scholar 

  • Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206

    Article  PubMed  CAS  Google Scholar 

  • Wan SB, Tian L, Tian RR, Pan QH, Zhan JC, Wen PF, Chen JY, Zhang P, Wang W, Huang WD (2009) Involvement of phospholipase D in the low temperature acclimation-induced thermotolerance in grape berry. Plant Physiol Biochem 47:504–510

    Article  PubMed  CAS  Google Scholar 

  • Wang LJ, Li SH (2006) Thermotolerance and related antioxidant enzyme activities induced by heat acclimation and salicylic acid in grape (Vitis vinifera L.) leaves. Plant Growth Regul 48:137–144

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  PubMed  CAS  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414:562–571

    Article  PubMed  CAS  Google Scholar 

  • Xia XJ, Wang YJ, Zhou YH, Tao Y, Mao WH, Shi K, Asami T, Chen Z, Yu JQ (2009) Reactive oxygen species are involved in Brassinosteroid-induced stress tolerance in cucumber. Plant Physiol 150:801–814

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yang Y, Qi M, Mei C (2004) Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. Plant J 40:909–919

    Article  PubMed  CAS  Google Scholar 

  • Yuasa T, Ichimura K, Mizoguchi T, Shinozaki K (2001) Oxidative stress activates ATMPK6, an Arabidosis homologue of MAP kinase. Plant Cell Physiol 42:1012–1016

    Article  PubMed  CAS  Google Scholar 

  • Zhang WP, Jiang B, Lou LN, Lu MH, Yang M, Chen JF (2011) Impact of salicylic acid on the antioxidant enzyme system and hydrogen peroxide production in Cucumis sativus under chilling stress. Z Naturforsch C 66:413–422

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Zhong JJ (2011) Intracellular salicylic acid is involved in signal cascade regulating low ammonium-induced taxoid biosynthesis in suspension cultures of Taxus chinensis. Appl Microbiol Biotechnol 90:1027–1036

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the editors and reviewers for their critical reading and constructive suggestions. This work is supported by the Young Scientists Fund of the National Natural Science Foundation of China (No. 31101548), the Special Fund for Agro-scientific Research in the Public Interest (No. 201303014), the International Science and Technology Cooperation Program of China (2010DFB30550) and the China Agriculture Research System (CARS-25). This work is also supported by the Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun-Juan Dong or Qing-Mao Shang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 442 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, CJ., Li, L., Shang, QM. et al. Endogenous salicylic acid accumulation is required for chilling tolerance in cucumber (Cucumis sativus L.) seedlings. Planta 240, 687–700 (2014). https://doi.org/10.1007/s00425-014-2115-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2115-1

Keywords

Navigation