Skip to main content
Log in

Comparison of Different Pretreatment Strategies for Ethanol Production of West African Biomass

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pretreating lignocellulosic biomass for cellulosic ethanol production in a West African setting requires smaller scale and less capital expenditure compared to current state of the art. In the present study, three low-tech methods applicable for West African conditions, namely Boiling Pretreatment (BP), Soaking in Aqueous Ammonia (SAA) and White Rot Fungi pretreatment (WRF), were compared to the high-tech solution of hydrothermal pretreatment (HTT). The pretreatment methods were tested on 11 West African biomasses, i.e. cassava stalks, plantain peelings, plantain trunks, plantain leaves, cocoa husks, cocoa pods, maize cobs, maize stalks, rice straw, groundnut straw and oil palm empty fruit bunches. It was found that four biomass’ (plantain peelings, plantain trunks, maize cobs and maize stalks) were most promising for production of cellulosic ethanol with profitable enzymatic conversion of glucan (>30 g glucan per 100 g total solids (TS)). HTT did show better results in both enzymatic convertibility and fermentation, but evaluated on the overall ethanol yield the low-tech pretreatment methods are viable alternatives with similar levels to the HTT (13.4–15.2 g ethanol per 100 g TS raw material).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mangoyana, R. B. (2009). Physics and Chemistry of the Earth, 34, 59–64.

    Article  Google Scholar 

  2. Ejigu, M. (2008). Natural Resources Forum, 32, 152–162.

    Article  Google Scholar 

  3. Brew-Hammond, A., & Kemausuor, F. (2009). Current Opinion in Environmental Sustainability, 1, 83–88.

    Article  Google Scholar 

  4. Duku, M. H., Gu, S., & Hagan, E. B. (2011). Renewable Sustainable Energy Reviews, 15, 404–415.

    Article  Google Scholar 

  5. Kemausuor, F., Kamp, A., Thomsen, S. T., Bensah, E. C., & Østgård, H. (2013). Resources Conservation and Recycling, 86, 28–37.

    Article  Google Scholar 

  6. Thomsen, S. T., Kádár, Z., & Schmidt, J. E. (2013). Biomass Bioenergy, 63, 210–217.

    Article  Google Scholar 

  7. Amigun, B., Sigamoney, R., & von Blottnitz, H. (2008). Renewable and Sustainable Energy Reviews, 12, 690–711.

    Article  Google Scholar 

  8. Quintero, J. A., Cardona, C. A., Felix, E., Moncada, J., Sánchez, Ó. J., & Gutiérrez, L. F. (2012). Energy, 48, 442–454.

    Article  Google Scholar 

  9. Osagie, S. (2008). Engineering and Technology, 3, 68.

    Article  Google Scholar 

  10. Sarkar, N., Ghosh, S. K., Bannerjee, S., & Aikat, K. (2012). Renewable Energy, 37, 19–27.

    Article  CAS  Google Scholar 

  11. Martin, C., & Thomsen, A. B. (2007). Journal of Chemical Technology and Biotechnology, 82, 174–181.

    Article  CAS  Google Scholar 

  12. Idi, A., Salleh, M. M., Ibrahim, Z., & Mohamad, S. E. (2012). Journal of Technology Sciences and Engineering, 59, 49–56.

    Google Scholar 

  13. Zhang, H., Zhou, Y., Li, J., Dai, L., Liu, D., Zhang, J., Choo, Y. M., & Loh, S. K. (2013). Chinese Journal of Biotechnology, 29, 490–500.

    CAS  Google Scholar 

  14. Bensah, E. C., & Mensah, M. (2013). International Journal in Chemical Engineering, 2013, 21.

    Article  Google Scholar 

  15. Hu, F., & Ragauskas, A. (2012). Bioenergy Research, 5, 1043–1066.

    Article  CAS  Google Scholar 

  16. Carvalheiro, D. G. (2008). Journal of Industrial Research (India), 67, 849–864.

    CAS  Google Scholar 

  17. Vegas, R., Kabel, M., Schols, H. A., Alonso, J. L., & Parajó, J. C. (2008). Journal of Chemical Technology and Biotechnology, 83, 965–972.

    Article  CAS  Google Scholar 

  18. Thomsen, S. T., Jensen, M., & Schmidt, J. E. (2012). BioResource, 7, 1582–1593.

    Article  Google Scholar 

  19. Ambye-Jensen, M., Thomsen, S. T., Kádár, Z., & Meyer, A. S. (2013). Biotechnology for Biofuels, 6, 116.

    Article  CAS  Google Scholar 

  20. Larsen, J., Haven, M. Ø., & Thirup, L. (2012). Biomass Bioenergy, 46, 36–45.

    Article  CAS  Google Scholar 

  21. Harun, M. Y., Dayang Radiah, A. B., Zainal Abidin, Z., & Yunus, R. (2011). Bioresource Technology, 102, 5193–5199.

    Article  CAS  Google Scholar 

  22. Haque, M. A., Barman, D. N., Kang, T. H., Kim, M. K., Kim, J., Kim, H., & Yun, H. D. (2012). Journal in Microbiology and Biotechnology, 22, 1681–1691.

    Article  CAS  Google Scholar 

  23. Sluiter, J. B., Ruiz, R. O., Scarlata, C. J., Sluiter, A. D., & Templeton, D. W. (2010). Journal of Agricultural and Food Chemistry, 58, 9043–9053.

    Article  CAS  Google Scholar 

  24. Brown, R. C. (2003). Biorenewable resources engineering new products from agriculture (1st ed.). Iowa: Blackwell Publishing.

    Google Scholar 

  25. Kim, T. H., Gupta, R., & Lee, Y. Y. (2009). Methods. Molecular Biology, 581, 79–91.

    CAS  Google Scholar 

  26. Isci, A., Himmelsbach, J. N., Pometto, A. L., Raman, D. R., & Anex, R. P. (2008). Applied Biochemistry and Biotechnology, 144, 69–77.

    Article  CAS  Google Scholar 

  27. Jurado, E., Skiadas, I. V., & Gavala, H. N. (2013). Applied Energy, 109, 104–111.

    Article  CAS  Google Scholar 

  28. Kim, M., Aita, G., & Day, D. F. (2010). Applied Biochemistry and Biotechnology, 161, 34–40.

    Article  CAS  Google Scholar 

  29. Kim, T. H., & Lee, Y. Y. (2005). Applied Biochemistry and Biotechnology, 124, 1119–1131.

    Article  Google Scholar 

  30. Sánchez, C. (2009). Biotechnology Advances, 27, 185–194.

    Article  Google Scholar 

  31. Isroi; Millati, R., Syamsiah, S., Niklasson, C., Nur Cahyanto, M., Lundquist, K. and Taherzadeh, MJ. (2011) BioResour. 6, 5224–5259

  32. Wan, C., & Li, Y. (2012). Biotechnology Advances, 30, 1447–1457.

    Article  CAS  Google Scholar 

  33. Clesceri, L. S., Greenberg, A. E., & Eaton, A. D. (1998). Standard methods for the examination of water and wastewater. Washington: American Public Health Association.

    Google Scholar 

  34. Bjerre, AB. & Sørensen, E. (1990) Thermal and oxidative decomposition of lower fatty acids with special attention to formic acid. Report of Risø National Laboratorium

  35. Bjerre, A. B., Olesen, A. B., Fernqvist, T., Ploger, A., & Schmidt, A. S. (1996). Biotechnology and Bioenergy, 49, 568–577.

    Article  CAS  Google Scholar 

  36. Schultz-Jensen, N., Thygesen, A., Leipold, F., Thomsen, S. T., Roslander, C., Lilholt, H., & Bjerre, A. B. (2013). Bioresource Technology, 140, 36–42.

    Article  CAS  Google Scholar 

  37. Salvachua, D., Prieto, A., Lopez-Abelairas, M., Lu-Chau, T., Martinez, A. T., & Martinez, M. J. (2011). Bioresource Technology, 102(16), 7500–7506.

    Article  CAS  Google Scholar 

  38. Wan, C., & Li, Y. (2011). Bioresource Technology, 102, 7507–7512.

    Article  CAS  Google Scholar 

  39. Larsen, J., Petersen, M. Ø., Thirup, L., Li, H. W., & Iversen, F. K. (2008). Chemical Engineering and Technology, 31, 765–772.

    Article  CAS  Google Scholar 

  40. Thomsen, M. H., Thygesen, A., & Thomsen, A. B. (2009). Applied Microbiology and Antibiotics, 83, 447.

    Article  CAS  Google Scholar 

  41. Xu, J., Thomsen, M. H., & Thomsen, A. B. (2010). Applied Microbiology and Biotechnology, 86, 509–516.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from Danida Fellowship Centre (DFC) of the Danish Ministry of Foreign Affairs, as a part of the project “Biofuel production from lignocellulosic materials—2GBIONRG”, DFC journal no. 10-018RISØ (http://2gbionrg.dk ). Annette Eva Jensen, Tomas Fernqvist and Ingelis Larsen are acknowledged for their vital and professional assistance in the laboratory. Dr Moses Mensah and Dr Edward Yeboah are recognised for providing the residues. Professor Hanne Østergård is sincerely thanked for her help with the planning and motivation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsófia Kádár.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomsen, S.T., Londoño, J.E.G., Schmidt, J.E. et al. Comparison of Different Pretreatment Strategies for Ethanol Production of West African Biomass. Appl Biochem Biotechnol 175, 2589–2601 (2015). https://doi.org/10.1007/s12010-014-1444-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1444-7

Keywords

Navigation