Skip to main content
Log in

Molecular Characterization and Expression of Lck in Nile Tilapia (Oreochromis niloticus) in Response to Streptococcus agalactiae Stimulus

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lymphocyte-specific protein tyrosine kinase (Lck) plays a critical role in effective signal transductions that are fundamental to T cell differentiation, proliferation, and effector functions. In this paper, the Lck gene of Nile tilapia, Oreochromis niloticus (designated as On-Lck), was cloned and its expression pattern under the stimulation of Streptococcus agalactiae was investigated. Sequence analysis showed important structural characteristics required for T cell receptor (TCR) signal transduction were detected in the deduced amino acid sequence of On-Lck, and the deduced genomic structure of On-Lck was similar to the known Lck. In healthy Nile tilapia, the On-Lck transcripts were mainly detected in the thymus, spleen, head kidney, and gill. When immunized with inactivated S. agalactiae, the On-Lck mRNA expression was significantly upregulated in the thymus, spleen, and head kidney. Moreover, there was a clear time-dependent expression pattern of On-Lck after immunization, and the expression reached the highest level at 48 h in the spleen and thymus and at 72 h in the head kidney, respectively. This is the first report on the expression of Lck induced by intracellular bacteria vaccination in teleosts. These findings indicated that On-Lck may play an important role in the immune response to intracellular bacteria in Nile tilapia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Smith-Garvin, J. E., Koretzky, G. A., & Jordan, M. S. (2009). T cell activation. Annual Review of Immunology, 27, 591–619.

    Article  CAS  Google Scholar 

  2. Davis, S. J., Ikemizu, S., Evans, E. J., Fugger, L., Bakker, T. R., & van der Merwe, P. A. (2003). The nature of molecular recognition by T cells. Nature Immunology, 4, 217–24.

    Article  CAS  Google Scholar 

  3. Palacios, E. H., & Weiss, A. (2004). Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene, 23, 7990–8000.

    Article  CAS  Google Scholar 

  4. Salmond, R. J., Filby, A., Qureshi, I., Caserta, S., & Zamoyska, R. (2009). T-cell receptor proximal signaling via the Src-family kinases, Lck and Fyn, influences T-cell activation, differentiation, and tolerance. Immunological Reviews, 228, 9–22.

    Article  CAS  Google Scholar 

  5. van Oers, N. S., Killeen, N., & Weiss, A. (1996). Lck regulates the tyrosine phosphorylation of the T cell receptor subunits and ZAP-70 in murine thymocytes. The Journal of Experimental Medicine, 183, 1053–62.

    Article  Google Scholar 

  6. Neumeister, E. N., Zhu, Y., Richard, S., Terhorst, C., Chan, A. C., & Shaw, A. S. (1995). Binding of ZAP-70 to phosphorylated T-cell receptor zeta and eta enhances its autophosphorylation and generates specific binding sites for SH2 domain-containing proteins. Molecular and Cellular Biology, 15, 3171–8.

    CAS  Google Scholar 

  7. Zhang, W., Sloan-Lancaster, J., Kitchen, J., Trible, R. P., & Samelson, L. E. (1998). LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell, 92, 83–92.

    Article  CAS  Google Scholar 

  8. Sommers, C. L., Samelson, L. E., & Love, P. E. (2004). LAT: a T lymphocyte adapter protein that couples the antigen receptor to downstream signaling pathways. BioEssays, 26, 61–7.

    Article  CAS  Google Scholar 

  9. Veillette, A., Bookman, M. A., Horak, E. M., & Bolen, J. B. (1988). The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck. Cell, 55, 301–8.

    Article  CAS  Google Scholar 

  10. Kabouridis, P. S., Magee, A. I., & Ley, S. C. (1997). S-acylation of LCK protein tyrosine kinase is essential for its signalling function in T lymphocytes. The EMBO Journal, 16, 4983–98.

    Article  CAS  Google Scholar 

  11. Kim, P. W., Sun, Z. Y., Blacklow, S. C., Wagner, G., & Eck, M. J. (2003). A zinc clasp structure tethers Lck to T cell coreceptors CD4 and CD8. Science, 301, 1725–8.

    Article  CAS  Google Scholar 

  12. Turner, J. M., Brodsky, M. H., Irving, B. A., Levin, S. D., Perlmutter, R. M., & Littman, D. R. (1990). Interaction of the unique N-terminal region of tyrosine kinase p56lck with cytoplasmic domains of CD4 and CD8 is mediated by cysteine motifs. Cell, 60, 755–65.

    Article  CAS  Google Scholar 

  13. Yasuda, K., Kosugi, A., Hayashi, F., Saitoh, S., Nagafuku, M., Mori, Y., et al. (2000). Serine 6 of Lck tyrosine kinase: a critical site for Lck myristoylation, membrane localization, and function in T lymphocytes. Journal of Immunology, 165, 3226–31.

    Article  CAS  Google Scholar 

  14. Bergman, M., Mustelin, T., Oetken, C., Partanen, J., Flint, N. A., Amrein, K. E., et al. (1992). The human p50csk tyrosine kinase phosphorylates p56lck at Tyr-505 and down regulates its catalytic activity. The EMBO Journal, 11, 2919–24.

    CAS  Google Scholar 

  15. D’Oro, U., & Ashwell, J. D. (1999). Cutting edge: the CD45 tyrosine phosphatase is an inhibitor of Lck activity in thymocytes. Journal of Immunology, 162, 1879–83.

    Google Scholar 

  16. McNeill, L., Salmond, R. J., Cooper, J. C., Carret, C. K., Cassady-Cain, R. L., Roche-Molina, M., et al. (2007). The differential regulation of Lck kinase phosphorylation sites by CD45 is critical for T cell receptor signaling responses. Immunity, 27, 425–37.

    Article  CAS  Google Scholar 

  17. Holdorf, A. D., Lee, K. H., Burack, W. R., Allen, P. M., & Shaw, A. S. (2002). Regulation of Lck activity by CD4 and CD28 in the immunological synapse. Nature Immunology, 3, 259–64.

    Article  CAS  Google Scholar 

  18. Veillette, A., & Fournel, M. (1990). The CD4 associated tyrosine protein kinase p56lck is positively regulated through its site of autophosphorylation. Oncogene, 5, 1455–62.

    CAS  Google Scholar 

  19. Brenner, S., Venkatesh, B., Yap, W.H., Chou, C.F., Tay, A., Ponniah, S., et al. (2002). Conserved regulation of the lymphocyte-specific expression of lck in the Fugu and mammals. Proceedings of the National Academy of Sciences of the United States of America, 99, 2936–41.

  20. Langenau, D. M., Ferrando, A. A., Traver, D., Kutok, J. L., Hezel, J. P., Kanki, J. P., et al. (2004). In vivo tracking of T cell development, ablation, and engraftment in transgenic zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 101, 7369–74.

    Article  CAS  Google Scholar 

  21. Laing, K. J., Dutton, S., & Hansen, J. D. (2007). Molecular and biochemical analysis of rainbow trout LCK suggests a conserved mechanism for T-cell signaling in gnathostomes. Molecular Immunology, 44, 2737–48.

    Article  CAS  Google Scholar 

  22. Overgard, A. C., Nerland, A. H., & Patel, S. (2010). Cloning, characterization, and expression pattern of Atlantic halibut (Hippoglossus hippoglossus L.) CD4-2, Lck, and ZAP-70. Fish & Shellfish Immunology, 29, 987–97.

    Article  CAS  Google Scholar 

  23. Barros, M. M., Falcon, D. R., Orsi Rde, O., Pezzato, L. E., Fernandes, A. C., Guimaraes, I. G., et al. (2014). Non-specific immune parameters and physiological response of Nile tilapia fed beta-glucan and vitamin C for different periods and submitted to stress and bacterial challenge. Fish & Shellfish Immunology, 39, 188–95.

    Article  CAS  Google Scholar 

  24. Huang, L. Y., Wang, K. Y., Xiao, D., Chen, D. F., Geng, Y., Wang, J., et al. (2014). Safety and immunogenicity of an oral DNA vaccine encoding Sip of Streptococcus agalactiae from Nile tilapia Oreochromis niloticus delivered by live attenuated Salmonella typhimurium. Fish & Shellfish Immunology, 38, 34–41.

    Article  CAS  Google Scholar 

  25. Wang, Y. T., Huang, H. Y., Tsai, M. A., Wang, P. C., Jiang, B. H., & Chen, S. C. (2014). Phosphoglycerate kinase enhanced immunity of the whole cell of Streptococcus agalactiae in tilapia, Oreochromis niloticus. Fish & Shellfish Immunology, 41, 250–9.

    Article  CAS  Google Scholar 

  26. Laing, K. J., & Hansen, J. D. (2011). Fish T cells: recent advances through genomics. Developmental and Comparative Immunology, 35, 1282–95.

    Article  CAS  Google Scholar 

  27. Fischer, U., Koppang, E. O., & Nakanishi, T. (2013). Teleost T and NK cell immunity. Fish & Shellfish Immunology, 35, 197–206.

    Article  CAS  Google Scholar 

  28. Wang, B., Jian, J., Lu, Y., Cai, S., Huang, Y., Tang, J., et al. (2012). Complete genome sequence of Streptococcus agalactiae ZQ0910, a pathogen causing meningoencephalitis in the GIFT strain of Nile tilapia (Oreochromis niloticus). Journal of Bacteriology, 194, 5132–3.

    Article  CAS  Google Scholar 

  29. Samanta, M., Swain, B., Basu, M., Mahapatra, G., Sahoo, B. R., Paichha, M., et al. (2014). Toll-like receptor 22 in Labeo rohita: molecular cloning, characterization, 3D modeling, and expression analysis following ligands stimulation and bacterial infection. Applied Biochemistry and Biotechnology, 174, 309–27.

    Article  CAS  Google Scholar 

  30. Mian, G. F., Godoy, D. T., Leal, C. A., Yuhara, T. Y., Costa, G. M., & Figueiredo, H. C. (2009). Aspects of the natural history and virulence of S. agalactiae infection in Nile tilapia. Veterinary Microbiology, 136, 180–3.

    Article  CAS  Google Scholar 

  31. Secombes, C. (2008). Will advances in fish immunology change vaccination strategies? Fish & Shellfish Immunology, 25, 409–16.

    Article  CAS  Google Scholar 

  32. Gudding, R., & Van Muiswinkel, W. B. (2013). A history of fish vaccination: science-based disease prevention in aquaculture. Fish & Shellfish Immunology, 35, 1683–8.

    Article  CAS  Google Scholar 

  33. Van Muiswinkel, W. B., & Nakao, M. (2014). A short history of research on immunity to infectious diseases in fish. Developmental and Comparative Immunology, 43, 130–50.

    Article  Google Scholar 

  34. Suetake, H., Araki, K., & Suzuki, Y. (2004). Cloning, expression, and characterization of fugu CD4, the first ectothermic animal CD4. Immunogenetics, 56, 368–74.

    Article  CAS  Google Scholar 

  35. Laing, K. J., Zou, J. J., Purcell, M. K., Phillips, R., Secombes, C. J., & Hansen, J. D. (2006). Evolution of the CD4 family: teleost fish possess two divergent forms of CD4 in addition to lymphocyte activation gene-3. Journal of Immunology, 177, 3939–51.

    Article  CAS  Google Scholar 

  36. Edholm, E. S., Stafford, J. L., Quiniou, S. M., Waldbieser, G., Miller, N. W., Bengten, E., et al. (2007). Channel catfish, Ictalurus punctatus, CD4-like molecules. Developmental and Comparative Immunology, 31, 172–87.

    Article  CAS  Google Scholar 

  37. Sun, X. F., Shang, N., Hu, W., Wang, Y. P., & Guo, Q. L. (2007). Molecular cloning and characterization of carp (Cyprinus carpio L.) CD8beta and CD4-like genes. Fish & Shellfish Immunology, 23, 1242–55.

    Article  CAS  Google Scholar 

  38. Buonocore, F., Randelli, E., Casani, D., Guerra, L., Picchietti, S., Costantini, S., et al. (2008). A CD4 homologue in sea bass (Dicentrarchus labrax): molecular characterization and structural analysis. Molecular Immunology, 45, 3168–77.

    Article  CAS  Google Scholar 

  39. Patel, S., Overgard, A. C., & Nerland, A. H. (2009). A CD4 homologue in Atlantic halibut (Hippoglossus hippoglossus): molecular cloning and characterisation. Fish & Shellfish Immunology, 26, 377–84.

    Article  CAS  Google Scholar 

  40. Kato, G., Goto, K., Akune, I., Aoka, S., Kondo, H., & Hirono, I. (2013). CD4 and CD8 homologues in Japanese flounder, Paralichthys olivaceus: differences in the expressions and localizations of CD4-1, CD4-2, CD8alpha and CD8beta. Developmental and Comparative Immunology, 39, 293–301.

    Article  CAS  Google Scholar 

  41. Fishelson, L. (1995). Cytological and morphological ontogenesis and involution of the thymus in cichlid fishes (Cichlidae, Teleostei). Journal of Morphology, 223, 175–90.

    Article  Google Scholar 

  42. Mebius, R. E., & Kraal, G. (2005). Structure and function of the spleen. Nature Reviews Immunology, 5, 606–16.

    Article  CAS  Google Scholar 

  43. Cesta, M. F. (2006). Normal structure, function, and histology of the spleen. Toxicologic Pathology, 34, 455–65.

    Article  Google Scholar 

  44. Romano, N. (1998). Ontogeny of the immune system of fish using specific markers. PhD Thesis, Agricultural University of Wageningen, Wageningen (NL), Poesen, K & Looijen, BV Press, 1–168.

  45. Romano, N., Ceccariglia, S., Mastrolia, L., & Mazzini, M. (2002). Cytology of lymphomyeloid head kidney of Antarctic fishes Trematomus bernacchii (Nototheniidae) and Chionodraco hamatus (Channicthyidae). Tissue and Cell, 34, 63–72.

    Article  Google Scholar 

  46. Al-Adhame, M. A., & Kunz, Y. W. (1977). Ontogenesis of haematopoietic sites in Brachydanio rerio (Hamilton-Buchanan) (Teleostei). Development, Growth and Differentiation, 19, 171–79.

    Article  Google Scholar 

  47. Zon, L. I. (1995). Developmental biology of hematopoiesis. Blood, 86, 2876–91.

    CAS  Google Scholar 

  48. Hayashi, N., Takeuchi, M., Nakanishi, T., Hashimoto, K., & Dijkstra, J. M. (2010). Zinc-dependent binding between peptides derived from rainbow trout CD8alpha and LCK. Fish & Shellfish Immunology, 28, 72–6.

    Article  CAS  Google Scholar 

  49. Gan, Z., Wang, B., Lu, Y., Cai, S., Cai, J., Jian, J., et al. (2014). Molecular characterization and expression of CD2BP2 in Nile tilapia (Oreochromis niloticus) in response to Streptococcus agalactiae stimulus. Gene, 548, 126–33.

    Article  CAS  Google Scholar 

  50. Cornacchione, P., Scaringi, L., Fettucciari, K., Rosati, E., Sabatini, R., Orefici, G., et al. (1998). Group B streptococci persist inside macrophages. Immunology, 93, 86–95.

    Article  CAS  Google Scholar 

  51. Valenti-Weigand, P., Benkel, P., Rohde, M., & Chhatwal, G. S. (1996). Entry and intracellular survival of group B streptococci in J774 macrophages. Infection and Immunity, 64, 2467–73.

    CAS  Google Scholar 

Download references

Acknowledgments

We thank all the laboratory members for their critical reviews and comments on this manuscript. We are especially grateful for the critical comments from the anonymous reviewers. This work was supported by research grants (no. 31302226, no. 2012B020308009) from the National Natural Science Foundation of China and Science and Technology Planning Project of Guangdong Province of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yishan Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, Z., Wang, B., Lu, Y. et al. Molecular Characterization and Expression of Lck in Nile Tilapia (Oreochromis niloticus) in Response to Streptococcus agalactiae Stimulus. Appl Biochem Biotechnol 175, 2376–2389 (2015). https://doi.org/10.1007/s12010-014-1443-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1443-8

Keywords

Navigation