Skip to main content

Advertisement

Log in

The Influence of the Buffering Capacity on the Production of Organic Acids and Alcohols from Wastewater in Anaerobic Reactor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Some bacteria common in anaerobic digestion process can ferment a broad variety of organic compounds to organic acids, alcohols, and hydrogen, which can be used as biofuels. Researches are necessary to control the microbial interactions in favor of the alcohol production, as intermediary products of the anaerobic digestion of organic compounds. This paper reports on the effect of buffering capacity on the production of organic acids and alcohols from wastewater by a natural mixed bacterial culture. The hypothesis tested was that the increase of the buffering capacity by supplementation of sodium bicarbonate in the influent results in benefits for alcohol production by anaerobic fermentation of wastewater. When the influent was not supplemented with sodium bicarbonate, the chemical oxygen demand (COD)-ethanol and COD-methanol detected in the effluent corresponded to 22.5 and 12.7 % of the COD-sucrose consumed. Otherwise, when the reactor was fed with influent containing 0.5 g/L of sodium bicarbonate, the COD-ethanol and COD-methanol were effluents that corresponded to 39.2 and 29.6 % of the COD-sucrose consumed. Therefore, the alcohol production by supplementation of the influent with sodium bicarbonate was 33.6 % higher than the fermentation of the influent without sodium bicarbonate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lee, S. Y., Park, J. H., Jang, S. H., Nielsen, L. K., Kim, J., & Jung, K. S. (2008). Biotechnology Bioengineering, 101(2), 209–228.

    Article  CAS  Google Scholar 

  2. Grobben, N., Eggink, G., Cuperus, F. P., & Huizing, H. J. (1993). Applied Microbiology and Biotechnology, 39, 494–498.

    Article  CAS  Google Scholar 

  3. Fujita, H., Qian, Q., Fujii, T., Mochizuchi, K., & Sakoda, A. (2011). Adsorption, 17, 869–879.

    Article  CAS  Google Scholar 

  4. Kujawski, W., & Roszak, R. (2001). Separation Science and Technology, 37(15), 3559–3575.

    Article  Google Scholar 

  5. Mariano, A. P., & Maciel Filho, R. (2012). Bioenergy Research, 5, 504–514.

    Article  CAS  Google Scholar 

  6. He, G., Kong, Q., Chen, Q., & Ruan, H. (2005). Journal of Zhejiang University. Science, 6B(11), 1076–1080.

    Article  CAS  Google Scholar 

  7. Hartmanis, M. G. N., & Gatenbeck, S. (1984). Applied and Environmental Microbiology, 47(6), 1277–1283.

    CAS  Google Scholar 

  8. Ezeji, T., Milne, C., Price, N. D., & Blaschek, H. P. (2010). Applied Microbiology and Biotechnology, 85, 1697–1712.

    Article  CAS  Google Scholar 

  9. Leite, J. A. C., Fernandes, B. S., Pozzi, E., Barboza, M., & Zaiat, M. (2008). International Journal of Hydrogen Energy, 33, 579–586.

    Article  CAS  Google Scholar 

  10. Penteado, E.D., Adorno, M.A.T., & Zaiat, M. (2012). In Annals of the 38th International Symposium on High Performance Liquid Phase Separations and Related Techniques, California, USA.

  11. APHA (1998) Standard method for the examination of water and wastewater. 20th ed. Washington D.C., USA.

  12. Griffiths, R. I., Whiteley, A. S., O’donnell, A. G., & Bailey, M. J. (2000). Applied and Environmental Microbiology, 66(12), 5488–5491.

    Article  CAS  Google Scholar 

  13. Nielsen, A. T., Liu, W., Filipe, C., Grady, L., Jr., Molin, S., & Stahl, D. (1999). Applied Environmental Microbiology, 65(3), 1251–1258.

    CAS  Google Scholar 

  14. Muyzer, G., Waal, E. C., & Uitterlinden, G. (1993). Applied and Environmental Microbiology, 56, 695–700.

    Google Scholar 

  15. D’Agostino, R. B., Belanger, A., & D’Agostino, R. B., Jr. (1990). American Statistician, 44(4), 316–321.

    Google Scholar 

  16. Lilliefors, H. W. (1967). Journal American Statistical Association, 62(318), 399–402.

    Article  Google Scholar 

  17. Mood, A. M. (1954). Annals of Mathematical Statistics, 25(3), 514–522.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support (Thematic Project, Proc. no. 2009/15984-0) and fellowship (granted to Ariovaldo José da Silva Process. n. 2010/20024-3) provided by the São Paulo Research Foundation—FAPESP. The authors thank Espaço da EscritaCoordenadoria Geral da Universidade—UNICAMP—for the language services provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, A.J., Pozzi, E., Foresti, E. et al. The Influence of the Buffering Capacity on the Production of Organic Acids and Alcohols from Wastewater in Anaerobic Reactor. Appl Biochem Biotechnol 175, 2258–2265 (2015). https://doi.org/10.1007/s12010-014-1424-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1424-y

Keywords

Navigation