Skip to main content
Log in

Mechanistic and Conformational Studies on the Interaction of a Platinum(II) Complex Containing an Antiepileptic Drug, Levetiracetam, With Bovine Serum Albumin by Optical Spectroscopic Techniques in Aqueous Solution

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Fluorescence spectroscopy in combination with circular dichroism (CD) and ultraviolet-visible (UV–vis) absorption spectroscopy were employed to investigate the binding of a new platinum(II) complex containing an antiepileptic drug “Levetiracetam” to bovine serum albumin (BSA) under the physiological conditions. In the mechanism discussion, it was proved that the fluorescence quenching of BSA by Pt(II) complex is a result of the formation of Pt(II) complex–BSA complex. The thermodynamic parameters ΔG, ΔH, and ΔS at different temperatures (283, 298, and 310 K) were calculated, and the negative value for ΔH and ΔS indicate that the hydrogen bonds and van der Waals interactions play major roles in Pt(II) complex–BSA association. Binding studies concerning the number of binding sites (n~1) and apparent binding constant K b were performed by fluorescence quenching method. The site marker competitive experiments indicated that the binding of Pt(II) complex to BSA primarily took place in site II. Based on the Förster’s theory, the average binding distance between Pt(II) complex and BSA was obtained (r = 5.29 nm). Furthermore, UV–vis, CD, and synchronous fluorescence spectrum were used to investigate the structural change of BSA molecules with addition of Pt(II) complex. These results indicate that the binding of Pt(II) complex to BSA causes apparent change in the secondary structure of BSA and do affect the microenvironment around the tryptophan residue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li, X., Li, Y., & Xu, W. (2006). Bioorganic and Medicinal Chemistry, 14, 1287–1293.

    Article  CAS  Google Scholar 

  2. Cheng, X. C., Wang, Q., Fang, H., Tang, W., & Xu, W. F. (2008). European Journal of Medicinal Chemistry, 43, 2130–2139.

    Article  CAS  Google Scholar 

  3. Jouyban, A., Fakhree, M. A. A., & Shayanfar, A. (2010). Journal of Pharmacy and Pharmaceutical Sciences, 13, 524–535.

    CAS  Google Scholar 

  4. Sampedro, F., Ruiz van Haperen, V. W. T., Izquierdo, M. A., Vicens, M., Santalo’, P., Pueyo, M., Llagostera, M., Marcuello, E., & De Andre’s, L. (1995). European Journal of Medicinal Chemistry, 30, 497–501.

    Article  CAS  Google Scholar 

  5. Moreno, V., Cervantes, G., Onoa, G. B., Sampedro, F., Santalo’, P., Solans, X., & Font-Bardia, M. (1997). Polyhedron, 16, 4297–4303.

    Article  CAS  Google Scholar 

  6. Morikawa, K., Honda, M., Endoh, K., Matsumoto, T., Akamatsu, K., Mitsui, H., & Koizumi, M. (1990). Chemical and Pharmaceutical Bulletin, 38, 930–935.

    Article  CAS  Google Scholar 

  7. Külcü, N., Flörke, U., & Arslan, H. (2005). Turkish Journal of Chemistry, 29, 1–6.

    Google Scholar 

  8. Tamil Vendana, D., Rajeswaria, S., Ilavenilb, S., & Venkatesa Prabhua, G. (2010). Orbital, 2, 201–208.

    Google Scholar 

  9. Wesselinova, D., Neykov, M., Kaloyanov, N., & Dimitrov, R. T. G. (2009). European Journal of Medicinal Chemistry, 44, 2720–2723.

    Article  CAS  Google Scholar 

  10. Gao, E. J., Wang, L., Zhu, M. C., Liu, L., & Zhang, W. Z. (2010). European Journal of Medicinal Chemistry, 45, 311–316.

    Article  CAS  Google Scholar 

  11. Shahabadi, N., & Hadidi, S. (2014). Applied Biochemistry and Biotechnology, 172, 2436–2454.

    Article  CAS  Google Scholar 

  12. Franklin, S. J. (2001). Current Opinion in Chemical Biology, 5, 201–208.

    Article  CAS  Google Scholar 

  13. Cowan, J. A. (2001). Current Opinion in Chemical Biology, 5, 634–642.

    Article  CAS  Google Scholar 

  14. Maurer, T. D., Kraft, B., Lato, S. M., Ellington, A. D., Zaleski, J. M. (2000) Chem. Commun. 69–70.

  15. Meggers, E. (2009) Chem. Commun. 1001–1010.

  16. Saquib, Q., Al-Khedhairy, A. A., Al-Arifi, S., Dhawan, A., & Musarrat, J. (2009). Toxicology In Vitro, 23, 848–854.

    Article  CAS  Google Scholar 

  17. Hu, Y. J., Liu, Y., Shen, X. S., Fang, X. Y., & Qu, S. S. (2005). Journal of Molecular Structure, 738, 143–147.

    Article  CAS  Google Scholar 

  18. Kamat, B. P. (2005). Journal of Pharmaceutical and Biomedical Analysis, 39, 1046–1050.

    Article  CAS  Google Scholar 

  19. Kamat, B. P. (2005). Journal Photoscience, 12, 11–15.

    CAS  Google Scholar 

  20. Seetharamappa, J., & Kamat, B. P. (2004). Chemical and Pharmaceutical Bulletin, 52, 1053–1057.

    Article  CAS  Google Scholar 

  21. Huang, B. X., Kim, H. Y., & Dass, C. (2004). Journal of the American Chemical Society, 15, 1237–1247.

    CAS  Google Scholar 

  22. Sulkowska, A., Maciazek, M., Rownicka, J., Bojko, B., Pentak, D., & Sulkowski, W. W. (2007). Journal of Molecular Structure, 836, 162–169.

    Article  Google Scholar 

  23. van de Weert, M., & Stella, L. (2011). Journal of Molecular Structure, 998, 144–150.

    Article  Google Scholar 

  24. Sulkowska, A. (2002). Journal of Molecular Structure, 614, 227–232.

    Article  CAS  Google Scholar 

  25. Efthimiadou, E. K., Karaliota, A., & Psomas, G. (2010). Journal of Inorganic Biochemistry, 104, 455–466.

    Article  CAS  Google Scholar 

  26. Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd ed.,New York: Springer Publications

  27. Shahabadi, N., & Hadidi, S. (2014). Spectrochimica Acta A, 122, 100–106.

    Article  CAS  Google Scholar 

  28. Chen, H., Ahsan, S. S., Santiago-Berrios, M. B., Abruna, H. D., & Webb, W. W. (2010). Journal of the American Chemical Society, 132, 7244–7245.

    Article  CAS  Google Scholar 

  29. Hu, Y., Yu, H., Dong, J., Yang, X., & Liu, Y. (2006). Spectrochimica Acta A, 65, 988–992.

    Article  Google Scholar 

  30. Hu, Y. J., Liu, Y., & Xiao, X. H. (2009). Biomacromolecules, 29, 517–521.

    Article  Google Scholar 

  31. Tian, F., Jiang, F., Han, X., Xiang, C., Ge, Y., Li, J., Zhang, Y., Li, R., Ding, X., & Liu, Y. (2010). The Journal of Physical Chemistry B, 114, 14842–14853.

    Article  CAS  Google Scholar 

  32. Sahoo, B. K., Ghosh, K. S., & Dasgupta, S. (2009). Biopolymers, 91, 108–119.

    Article  CAS  Google Scholar 

  33. Shi, Y., Liu, H., Xu, M., Li, Z., Xie, G., Huang, L., & Zeng, Z. (2012). Spectrochimica Acta A, 87, 251–257.

    Article  CAS  Google Scholar 

  34. Cheng, Z., & Zhang, Y. (2008). Journal of Molecular Structure, 889, 20–27.

    Article  CAS  Google Scholar 

  35. Jin, J., Zhu, J. F., Yao, X. J., & Wu, L. M. (2007). Journal of Photochemistry and Photobiology B, 191, 59–65.

    Article  CAS  Google Scholar 

  36. Sudlow, G., Birkett, D. J., & Wade, D. N. (1976). Molecular Pharmacology, 12, 1052–1061.

    CAS  Google Scholar 

  37. Peters, T. (1995). All about albumin: biochemistry, genetics and medical applications. San Diego: Academic.

    Google Scholar 

  38. Gerbanowski, A., Malabat, C., Rabiller, C., & Gueguen, J. (1999). Journal of Agricultural and Food Chemistry, 47, 5218–5226.

    Article  CAS  Google Scholar 

  39. He, W. Y., Li, Y., & Xue, C. X. (2005). Bioorganic and Medicinal Chemistry, 13, 1837–1845.

    Article  CAS  Google Scholar 

  40. Li, Y., He, W. Y., Liu, J. Q., Sheng, F. L., Hi, Z. D., & Chen, X. G. (2005). Biochimica et Biophysica Acta, 1722, 15–21.

    Article  CAS  Google Scholar 

  41. Ross, P. D., & Subramanian, S. (1981). Biochemistry, 20, 3096–3102.

    Article  CAS  Google Scholar 

  42. Stryer, L., & Haugland, R. P. (1967). Proceedings of the National Academy of Sciences of the United States of America, 58, 719–726.

    Article  CAS  Google Scholar 

  43. Stauffer, S. R., & Hartwig, J. F. (2003). Journal of the American Chemical Society, 125, 6977–6985.

    Article  CAS  Google Scholar 

  44. Valeur, B., & Brochon, J. C. (1999). New trends in fluorescence spectroscopy (6th ed.). Berlin: Springer Press.

    Google Scholar 

  45. Stryer, L. (1978). Annual Review of Biochemistry, 47, 819–846.

    Article  CAS  Google Scholar 

  46. Il’ichev, Y. V., Perry, J. L., & Simon, J. D. (2002). The Journal of Physical Chemistry B, 106, 452–459.

    Article  Google Scholar 

  47. Cyril, L., Earl, J. K., & Sperry, W. M. (1961). Biochemists’ handbook. London: E & F. N. Spon.

    Google Scholar 

  48. Mahammed, A., Gray, H. B., Weaver, J. J., Sorasaenee, K., & Gross, Z. (2004). Bioconjugate Chemistry, 15, 738–746.

    Article  CAS  Google Scholar 

  49. Olson, R. E., & Christ, D. D. (1996). Annual Reports in Medicinal Chemistry, 31, 327–337.

    Article  CAS  Google Scholar 

  50. Yan-Jun, H., Liu, Y., Bo, W. J., He, X. X., & Sheng, Q. S. (2004). Journal of Pharmaceutical and Biomedical Analysis, 36, 915–919.

    Article  Google Scholar 

  51. Witold, K. S., Henry, H. M., & Dennis, C. (1993). Biochemistry, 32, 389–394.

    Article  Google Scholar 

  52. Polet, H., & Steinhardt, J. (1968). Biochemistry, 7, 1348–1356.

    Article  CAS  Google Scholar 

  53. Li, D. J., Zhu, M., Xu, C., & Ji, B. M. (2011). European Journal of Medicinal Chemistry, 46, 588–599.

    Article  CAS  Google Scholar 

  54. Liu, B. S., Xue, C. L., Wang, J., Yang, C., Zhao, F. L., & Lv, Y. K. (2010). Journal of Luminescence, 130, 1999–2003.

    Article  CAS  Google Scholar 

  55. Greenfield, N., & Fasman, G. D. (1969). Biochemistry, 8, 4108–4116.

    Article  CAS  Google Scholar 

  56. Staprans, I., & Watanabe, S. (1970). The Journal of Biological Chemistry, 245, 5962–5966.

    CAS  Google Scholar 

  57. Yang, P., & Gao, F. (2002). The principle of bioinorganic chemistry. Beijing: Science Press.

    Google Scholar 

  58. Lloyd, J. B. F., & Evett, I. W. (1977). Analytical Chemistry, 49, 1710–1715.

    Article  CAS  Google Scholar 

  59. Fuller, C. W., & Miller, J. N. (1979). Proceedings of the Analytical Division of the Chemical Society, 16, 203–208.

    Article  Google Scholar 

  60. Tang, J. H., Luan, F., & Chen, X. G. (2006). Bioorganic and Medicinal Chemistry, 14, 3210–3217.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from Razi University Research Center and thank Miss Maryam Maghsudi for her kind assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahid Shahabadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahabadi, N., Hadidi, S. Mechanistic and Conformational Studies on the Interaction of a Platinum(II) Complex Containing an Antiepileptic Drug, Levetiracetam, With Bovine Serum Albumin by Optical Spectroscopic Techniques in Aqueous Solution. Appl Biochem Biotechnol 175, 1843–1857 (2015). https://doi.org/10.1007/s12010-014-1423-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1423-z

Keywords

Navigation