Skip to main content
Log in

Evaluation of Morphological Changes of Staphylococcus aureus and Escherichia coli Induced with the Antimicrobial Peptide AN5-1

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The mechanisms of action of AN5-1 against Gram-negative and Gram-positive bacteria were investigated by evaluations of the intracellular content leakage and by microscopic observations of the treated cells. Escherichia coli and Staphylococcus aureus were used for this investigation. Measurements of DNA, RNA, proteins, and β-galactosidase were taken, and the results showed a significant increase in the cultivation media after treatment with AN5-1 compared with the untreated cells. The morphological changes of treated cells were shown using transmission electron microscopy (TEM) and atomic force microscopy (AFM). The observations showed that AN5-1 acts against E. coli and against S. aureus in similar ways, by targeting the cell wall, causing disruptions; at a high concentration (80 AU/ml), these disruptions led to cell lysis. The 3D AFM imaging system showed that at a low concentration of 20 AU/ml, the effect of AN5-1 is restricted to pore formation only. Moreover, a separation between the cell wall and the cytoplasm was observed when Gram-negative bacteria were treated with a low concentration (20 AU/ml) of AN5-1

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

TEM:

Transmission electron microscopy

AFM:

Atomic force microscopy

AU:

Arbitrary units

References

  1. Izadpanah, A., & Gallo, R. (2005). Journal of the American Academy of Dermatology, 52, 381–390. quiz 391.

    Article  Google Scholar 

  2. Papagianni, M. (2003). Biotechnology Advances, 21, 465–499.

    Article  CAS  Google Scholar 

  3. Hassan, M., Kjos, M., Nes, I., Diep, D., & Lotfipour, F. (2012). Journal of Applied Microbiology, 113, 723–736.

    Article  CAS  Google Scholar 

  4. Jack, R., Tagg, J., & Ray, B. (1995). Microbiological Reviews, 59, 171–200.

    CAS  Google Scholar 

  5. Brogden, A. (2005). Nature Reviews Microbiology, 3, 238–250.

    Article  CAS  Google Scholar 

  6. Mannis, M. (2002). Transactions of the American Ophthalmological Society, 100, 243–271.

    Google Scholar 

  7. Silva, C., Sarmento, B., & Pintado, M. (2013). International Journal of Antimicrobial Agents, 41, 5–10.

    Article  CAS  Google Scholar 

  8. Straus, S., & Hancock, R. (2006). Biochimica et Biophysica Acta, 1758, 1215–1223.

    Article  CAS  Google Scholar 

  9. Teixeira, V., Feio, M., & Bastos, M. (2012). Progress in Lipid Research, 51, 149–177.

    Article  CAS  Google Scholar 

  10. Martin, I. (2003). Journal of Biological Chemistry, 278, 13124–13132.

    Article  CAS  Google Scholar 

  11. Todorov, S., & Dicks, L. (2006). Biotechnology Journal, 1, 405–409.

    Article  CAS  Google Scholar 

  12. Knoetze, H., Todorov, S., & Dicks, L. (2008). International Journal of Antimicrobial Agents, 31, 228–228.

    Article  CAS  Google Scholar 

  13. Todorov, S., Powell, J., Meincken, M., Witthuhn, R., & Dicks, L. (2007). International Journal of Dairy Technology, 60, 221–227.

    Article  CAS  Google Scholar 

  14. Alkotaini, B., Anuar, N., Kadhum, H., & Sani, A. (2013). Journal of Industrial Microbiology and Biotechnology, 40, 571–579.

    Article  CAS  Google Scholar 

  15. Li, A., Lee, P., Ho, B., Ding, J., & Lim, C. (2007). Biochimica et Biophysica Acta, 1768, 411–418.

    Article  CAS  Google Scholar 

  16. Anderson, R., Haverkamp, R., & Yu, P. (2004). FEMS Microbiology Letters, 240, 105–110.

    Article  CAS  Google Scholar 

  17. Lazarev, V., & Govorun, V. (2010). Applied Biochemistry and Microbiology, 46, 803–814.

    Article  CAS  Google Scholar 

  18. Miyazaki, Y., Aoki, M., Yano, Y., & Matsuzaki, K. (2012). Biochemistry, 51, 10229–10235.

    Article  CAS  Google Scholar 

  19. Li, A., Lee, P., Ho, B., Ding, J., & Lim, C. (2007). Biochimica et Biophysica Acta - Biomembranes, 1768, 411–418.

    Article  CAS  Google Scholar 

  20. Hancock, R. (2005). Lancet Infectious Diseases, 5, 209–218.

    Article  CAS  Google Scholar 

  21. Devine, D., & Hancock, R. (2002). Current Pharmaceutical Design, 8, 703–714.

    Article  CAS  Google Scholar 

  22. Gee, M., Burton, M., Grevis-James, A., Hossain, M., McArthur, S., & Palombo, E. (2013). Scientific Reports, 3, 1557.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by Research Grants UKM-DPP-2013-044 and GUP-2012-002 from the Universiti Kebangsaan Malaysia, Selangor, Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurina Anuar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkotaini, B., Anuar, N. & Kadhum, A.A.H. Evaluation of Morphological Changes of Staphylococcus aureus and Escherichia coli Induced with the Antimicrobial Peptide AN5-1. Appl Biochem Biotechnol 175, 1868–1878 (2015). https://doi.org/10.1007/s12010-014-1410-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1410-4

Keywords

Navigation