Skip to main content
Log in

Transferability of Cucumber Microsatellite Markers Used for Phylogenetic Analysis and Population Structure Study in Bottle Gourd (Lagenaria siceraria (Mol.) Standl.)

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Improved breeding for developing fruit quality in bottle gourd (Lagenaria siceraria (Mol.) Standl.) necessitates knowledge regarding its genetic diversity. To achieve this, a set of 108 locus-specific SSR markers has been developed in bottle gourd by cross-species transferability from 995 mapped Cucumis sativus SSR markers. During screening, 280 primer pairs amplified in the bottle gourd germplasm, which were further evaluated in a diverse set of 42 lines, resulting in 19 polymorphic, 89 monomorphic, 15 with multiple bands, and the rest 157 showed no or very non-specific amplification. The 19 polymorphic primer pairs produced a total of 54 alleles. Gene diversity, Shannon’s information index, and Nei’s coefficient of differentiation were calculated suggesting a moderate genetic variation at the species level. A model-based population structure analysis divided these germplasm into two subpopulations. This marker set will be applicable for evaluating the genetic structure for association mapping, DNA fingerprinting, and mounting linkage maps and will be a practical tool set for further genetics. This study provides one of the first quantitative views of population genetic variation in bottle gourd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Achigan, E. G., Fuchs, J., Ahanchede, A., & Blattnerv, F. R. (2008). Plant Systematics and Evolution, 276, 9–19.

    Article  Google Scholar 

  2. Erickson, D. L., Smith, B. D., Clarke, A. C., Sandweiss, D. H., & Tuross, N. (2005). Proceedings of the National Academy of Sciences, 102, 18315–20.

    Article  CAS  Google Scholar 

  3. Saha, P., Sen, S. K., Bala, A., Mazumder, U. K., & Haldar, P. K. (2011). International Journal of Cancer Research, 7, 244–253.

    Article  Google Scholar 

  4. Badmanaban, R., & Patel, C. N. (2010). Journal of Global Pharma Technology, 4, 66–70.

    Google Scholar 

  5. Upaganlawar, A., & Balaraman, R. (2010). International Journal of Pharmacology, 5, 645–651.

    Google Scholar 

  6. Bhawna, G., Abdin, M. Z., Arya, L., Dipnarayan, S., Sureja, A. K., Chitra, P., & Verma, M. (2014). Plant Systematics and Evolution, 300, 767–773.

    Article  Google Scholar 

  7. Pei, X., Shizhong, X., Xiaohua, W., Ye, T., Baogen, W., Sha, W., Dehui, Q., Zhongfu, L., & Guojing, L. (2013). The Plant Journal, 77, 430–442.

    Google Scholar 

  8. Xu, P., Wu, X., Luo, J., Wang, B., Liu, Y., Ehlers, J. D., Wang, S., Lu, Z., & Li, G. (2011). BMC Genomics, 120, 467.

    Article  Google Scholar 

  9. Decker-Walters, D., Staub, J., Lopez-Sese, A., & Nakata, E. (2001). Genetic Resources and Crop Evolution, 48, 369–380.

    Article  Google Scholar 

  10. Andrew, C. C., Michael, K. B., Patricia, A. M., David, L. E., & David, P. (2006). Molecular Biology and Evolution, 23, 893–900.

    Article  Google Scholar 

  11. Litt, M., & Luty, J. A. (1989). American Journal of Human Genetics, 44, 397–401.

    CAS  Google Scholar 

  12. Sablok, G., & Shekhawat, N. S. (2008). Journal of Computer Science & Systems Biology, 1, 087–091.

    Article  CAS  Google Scholar 

  13. The Arabidopsis Genome Initiative. (2000). Nature, 408, 796–815.

    Article  Google Scholar 

  14. Yu, J., Hu, S., Wang, J., Wong, G. K., Li, S., Liu, B., Deng, Y. J., Dai, L., Zhou, Y., & Zhang, X. Q. (2002). Science, 296, 79–92.

    Article  CAS  Google Scholar 

  15. The International Rice Genome Sequencing Project. (2005). Nature, 436, 793–800.

    Article  Google Scholar 

  16. Vogel, J. P., Garvin, D. F., Mockler, T. C., Schmutz, J., Rokhsar, D., Bevan, M. W., Barry, K., Lucas, S., Harmon, S. M., & Lail, K. (2010). Nature, 463, 763–768.

    Article  CAS  Google Scholar 

  17. Gale, M. D., & Devos, K. M. (1998). Proceedings of the National Academy of Sciences, 95, 1971–1974.

    Article  CAS  Google Scholar 

  18. Kellogg, E. A. (1998). Proceedings of the National Academy of Sciences, 95, 2005–2010.

    Article  CAS  Google Scholar 

  19. Bowers, J. E., Arias, M. A., Asher, R., Avise, J. A., Ball, R. T., Brewer, G. A., Buss, R. W., Chen, A. H., Edwards, T. M., & Estill, J. C. (2005). Proceedings of the National Academy of Sciences, 102, 13206–13211.

    Article  CAS  Google Scholar 

  20. Balachandran, M., Niteen, K., Jyoti, B., Sowmya, H. R., Mahadeva, A., Madhura, J. N., Udayakumar, M., Paramjit, K., & Sheshshayee, S. (2013). BMC Plant Biology, 13, 194.

    Article  Google Scholar 

  21. Fan, L., Zhang, M. Y., Liu, Q. Z., Li, L. T., Song, Y., Wang, L. F., Zhang, S. L., & Wu, J. (2013). Plant Molecular Biology Reporter, 31, 1271–1282.

    Article  CAS  Google Scholar 

  22. Liu, S.-R., Li, W.-Y., Long, D., Hu, C.-G., & Zhang, J.-Z. (2013). PLoS ONE, 8, e75149.

    Article  CAS  Google Scholar 

  23. Rai, M. K., Phulwaria, M., & Shekhawat, N. S. (2013). Molecular Biology Reports, 40, 5067–5071.

    Article  CAS  Google Scholar 

  24. Zhang, Z. Y., Han, J. W., Jin, Q., Wang, Y., Pang, X. M., & Li, Y. Y. (2013). Genetics and Molecular Research, 12, 4723–4734.

    Article  CAS  Google Scholar 

  25. Cota, L. G., Moreira, P. A., Menezes, E. V., Gomes, A. S., Ericsson, A. R. O., Oliveira, D. A., & Melo, A. F. (2012). Genetics and Molecular Research, 11, 4609–4616.

    Article  CAS  Google Scholar 

  26. Hua, Z., Jiangyan, Y., Frank, M. Y., Mingcheng, L., & Junhua, P. (2011). Journal of Integrative Plant Biology, 53, 232–245.

    Article  Google Scholar 

  27. Ren, Y., Zhang, Z., Liu, J., Staub, J. E., & Han, Y. (2009). PLoS ONE, 4, e5795.

    Article  Google Scholar 

  28. Saghai, M. A., Soliman, K. M., Jorgensen, R. A., & Allard, R. W. (1984). Proceedings of the National Academy of Sciences, 81, 8014–8018.

    Article  Google Scholar 

  29. Yeh, F.C., Yang, R.C., Boyle, T. (1999). POPGENE Version 1.32. Available from: http://www.ualberta.ca/*fyeh

  30. Slatkin, M., & Maddison, W. P. (1989). Genetics, 123, 603–613.

    CAS  Google Scholar 

  31. Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Genetics, 155, 945–959.

    CAS  Google Scholar 

  32. Dirlewanger, E., Cosson, P., Tavaud, M., Aranzana, M. J., Poizat, C., Zanetto, A., Ar’us, P., & Laigret, F. (2002). Theoretical and Applied Genetics, 105, 127–138.

    Article  CAS  Google Scholar 

  33. Ribeiro, C. C., Guedes, P. H., Igrejas, G., Stephenson, P., Schwarzacher, T., & Heslop-Harrison, J. S. (2004). Annals of Botany, 94, 699–705.

    Article  Google Scholar 

  34. Castillo, A., Budak, H., Varshney, R. K., Dorado, G., Graner, A., & Hernandez, P. (2008). BMC Plant Biology, 8, 97.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Verma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhawna, Abdin, M.Z., Arya, L. et al. Transferability of Cucumber Microsatellite Markers Used for Phylogenetic Analysis and Population Structure Study in Bottle Gourd (Lagenaria siceraria (Mol.) Standl.). Appl Biochem Biotechnol 175, 2206–2223 (2015). https://doi.org/10.1007/s12010-014-1395-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1395-z

Keywords

Navigation