Skip to main content
Log in

High-Performance Liquid Chromatographic Quantification of Plumbagin from Transformed Rhizoclones of Plumbago zeylanica L.: Inter-Clonal Variation in Biomass Growth and Plumbagin Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An optimized protocol for induction and establishment of Agrobacterium rhizogenes-mediated hairy root cultures of Plumbago zeylanica L. was developed through selection of suitable explant type and the bacterial strain. The infection of internodal explants from an in vivo plant and leaves of in vitro origin with the A4 strain resulted in the emergence of hairy roots at a transformation frequency of 86.33 and 42.33 %, respectively. Independent transformed root somaclones (rhizoclones) capable of sustained growth were maintained under a low illumination in auxin-free agar-solidified Murashige and Skoog (MS) medium through subcultures at periodic intervals. The presence of pRi T L -DNA rolB or rolC genes and pRi T R -DNA mas2 gene in the transformed rhizoclone genome was ascertained by PCR amplification. Concentrations and type of carbon source, auxin and media strength were optimized for root biomass growth. Five independent rhizoclones each from A4- and LBA9402-transformed root lines were studied for their plumbagin accumulation at different growth phases, using HPLC analysis. The potential for plumbagin biosynthesis was expressed in all the tested rhizoclones, although distinct inter-clonal variations were noted. It was evident that maturation of hairy roots was more important for plumbagin accumulation; slow-growing and early-maturing rhizoclones accumulated more plumbagin compared to fast-growing and late-maturing rhizoclones. A4-induced rhizoclone HRA2B5 was identified as the most superior clone with a higher plumbagin yield potential in comparison with other tested hairy root clones, in vitro-grown non-transformed roots and in vivo roots of naturally occurring P. zeylanica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. The Wealth of India (1989). A dictionary of Indian raw materials and industrial products (Vol.2, pp. 163-164). New Delhi, India: CSIR.

  2. Kirtikar, K. R., & Basu, B. D. (1993). Indian medicinal plants (2). Dehradun: Shiva Publishers.

    Google Scholar 

  3. Gebre-Mariam, T., Neubert, R., Schmidt, P. C., Wutzler, P., & Schmidtke, M. (2006). Journal of Ethnopharmacology, 104, 182–187.

    Article  CAS  Google Scholar 

  4. Wang, Y. C., & Huang, T. L. (2005). Journal of Chromatography A, 1094, 99–104.

    Article  CAS  Google Scholar 

  5. Simonsen, H. T., Nordskjold, J. B., Smitt, U. W., Nyman, U., Palpu, P., Joshi, P., & Varughese, G. (2001). Journal of Ethnopharmacology, 74, 195–204.

    Article  CAS  Google Scholar 

  6. Dai, Y., & Hou, L. F. (2005). Pharmaceutical Biology, 43(3), 243–248.

    Article  Google Scholar 

  7. Kavimani, S., Ilango, R., Madheswaran, M., Jayakar, B., Guupta, M., & Majumdar, U. K. (1996). Indian Journal of Pharmaceutical Science, 58(5), 194–196.

    CAS  Google Scholar 

  8. Kumar, R., Kumar, S., Patra, A., & Jayalakshmi, S. (2009). International Journal of Pharmacology and Pharmaceutical Science, 1(1), 171–175.

    Google Scholar 

  9. Ram, A. (1996). Indian Journal of Pharmacology, 28, 161–166.

    Google Scholar 

  10. Bopaiah, C. P., & Pradhan, N. (2001). Phytotherapy Research, 15, 153–156.

    Article  CAS  Google Scholar 

  11. Itogawa, M., Takeya, K., & Furukawa, H. (1991). Planta Medica, 57, 317–319.

    Article  Google Scholar 

  12. de Paiva, S. R., Figueiredo, M. R., Aragao, T. V., & Kaplan, M. A. C. (2003). Memórias do Instituto Oswaldo Cruz, 98, 959–961.

    Article  Google Scholar 

  13. Bhargava, S. K. (1984). Indian Journal of Experimental Biology, 22, 153–156.

    CAS  Google Scholar 

  14. Srinivasan, L., Mathew, N., & Muthuswamy, K. (2009). Parasitology Research, 105, 1179–1182.

    Article  Google Scholar 

  15. Bermejo-Besco´s, P., Martı´n-Arago´n, S., Jime´nez-Aliaga, K. L., Ortega, A., Molina, M. T., Buxaderas, E., Orellana, G., & Csa´ky¨, A. G. (2010). Biochemical and Biophysical Research Communications, 400, 169–174.

    Article  Google Scholar 

  16. Hsu, Y. L., Cho, C. Y., Kuo, P. L., Huang, Y. T., & Lin, C. C. (2006). Journal of Pharmacology and Experimental Therapeutics, 318, 484–494.

    Article  CAS  Google Scholar 

  17. Sandur, S. K., Ichikawa, H., Sethi, G., Ahn, K. S., & Aggarwal, B. B. (2006). Journal of Biological Chemistry, 281, 17023–17033.

    Article  CAS  Google Scholar 

  18. Kitanov, G. M., & Pashankov, P. P. (1994). Pharmazie, 49, 642–646.

    Google Scholar 

  19. Komaraiah, P., Kavi Kishor, P. B., & Ramakrishna, S. V. (2001). Biotechnology Letters, 23, 1269–1272.

    Article  CAS  Google Scholar 

  20. Panichayupakaranant, P., & Tewtrakul, S. (2002). Electronic Journal of Biotechnology, 5(3), 228–232.

    Article  Google Scholar 

  21. Kim, Y. J., Weathers, P. J., & Wyslouzil, B. E. (2002). Biotechnology and Bioengineering, 80(4), 454–464.

    Article  CAS  Google Scholar 

  22. Kim, Y. J., Wyslouzil, B. E., & Weathers, P. J. (2002). In Vitro Cellular and Developmental Biology-Plant, 38, 1–10.

    Article  CAS  Google Scholar 

  23. Nayak, P. (2013). In vitro propagation and plumbagin production from Agrobacterium-transformed hairy root cultures of Plumbago zeylanica L.—an important medicinal plant species. Ph.D. Thesis, Bhubaneswar (Odisha), India: Utkal University.

  24. Guillon, S., Trémouillaux-Guiller, J., Pati, P. K., Rideau, M., & Gantet, P. (2006). Current Opinion in Plant Biology, 9, 341–346.

    Article  CAS  Google Scholar 

  25. Guillon, S., Tremouillaux-Guiller, J., Pati, P. K., Rideau, M., & Gantet, P. (2006). Trends in Biotechnology, 24, 403–409.

    Article  CAS  Google Scholar 

  26. Georgiev, M. I., Pavlov, A. I., & Bley, T. (2007). Applied Microbiology and Biotechnology, 74, 1175–1185.

    Article  CAS  Google Scholar 

  27. Veena, V., & Taylor, C. G. (2007). In Vitro Cellular and Developmental Biology-Plant, 43, 383–403.

    Article  CAS  Google Scholar 

  28. Nilsson, O., & Olsson, O. (1997). Physiologia Plantarum, 100, 463–473.

    Article  CAS  Google Scholar 

  29. Aoki, S., & Syono, K. (1999). Plant and Cell Physiology, 40, 252–256.

    Article  CAS  Google Scholar 

  30. Bulgakov, V. P. (2008). Biotechnology Advances, 26, 318–324.

  31. Chandra, S. (2012). Biotechnology Letters, 34, 407–415.

    Article  CAS  Google Scholar 

  32. Shkryl, Y. N., Veremeichik, G. N., Bulgakov, V. P., Tchernoded, G. K., Mischenko, N. P., Fedoreyev, S. A., & Zhuravlev, Y. N. (2008). Biotechnology and Bioengineering, 100, 118–125.

    Article  CAS  Google Scholar 

  33. Kiselev, K. V., Dubrovina, A. S., & Bulgakov, V. P. (2009). Applied Microbiology and Biotechnology, 82(4), 647–655.

    Article  CAS  Google Scholar 

  34. Majumdar, S., Garai, S., & Jha, S. (2011). Plant Cell Reports, 30, 941–954.

    Article  CAS  Google Scholar 

  35. Ahlawat, S., Saxena, P., Ram, M., Alam, P., Nafis, T., Mohd, A., & Abdin, M. Z. (2012). African Journal of Biotechnology, 11(35), 8684–8691.

    CAS  Google Scholar 

  36. Swain, S. S., Rout, K. K., & Chand, P. K. (2012). Applied Biochemistry and Biotechnology, 168, 487–503.

    Article  CAS  Google Scholar 

  37. Georgiev, M. I., Agostini, E., Ludwig-Müller, J., & Xu, J. (2012). Trends in Biotechnology, 30(10), 528–537.

    Article  CAS  Google Scholar 

  38. Gangopadhyay, M., Sircar, D., Mitra, A., & Bhattacharya, S. (2008). Biologia Plantarum, 52(3), 533–537.

    Article  CAS  Google Scholar 

  39. Gangopadhyay, M., Dewanjee, S., Chakraborty, D., & Bhattacharya, S. (2011). Industrial Crops Products, 33, 445–450.

    Article  CAS  Google Scholar 

  40. Yogananth, N., & Jothi Basu, M. (2009). Global Journal of Biotechnology and Biochemistry, 4(1), 66–69.

    CAS  Google Scholar 

  41. Verma, P. C., Singh, D., Rahman, L., Gupta, M. M., & Banerjee, S. (2002). Journal of Plant Physiology, 159, 547–552.

    Article  CAS  Google Scholar 

  42. Sivanesan, I., & Jeong, B. R. (2009). African Journal of Biotechnology, 8(20), 5294–5300.

    CAS  Google Scholar 

  43. Sakamoto, S., Putalun, W., Pongkitwitoon, B., Juengwatanatrakul, T., Shoyama, Y., Tanaka, H., & Morimoto, S. (2012). Plant Cell Reports, 31, 103–110.

    Article  CAS  Google Scholar 

  44. Murashige, T., & Skoog, F. (1962). Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  45. Nayak, P., Thirunavoukkarasu, M., & Chand, P. K. (2011). Plant Science Research, 33(1&2), 44–51.

    Google Scholar 

  46. Doyle, J. J., & Doyle, J. L. (1990). Focus, 12, 13–15.

    Google Scholar 

  47. Slightom, J. L., Durandtardif, M., Jouanin, L., & Tepfer, D. (1986). Journal of Biological Chemistry, 261, 108–121.

    CAS  Google Scholar 

  48. Jouanin, L. (1984). Plasmid, 12, 91–102.

    Article  CAS  Google Scholar 

  49. Soudek, P., Podlipna, R., Marsik, P., & Vanek, T. (2005). Biologia Plantarum, 49(4), 487–492.

    Article  CAS  Google Scholar 

  50. Pal, A., Swain, S. S., Mukherjee, A. K., & Chand, P. K. (2013). Food Technology and Biotechnology, 51(1), 26–35.

    CAS  Google Scholar 

  51. Chaudhuri, K. N., Ghosh, B., Tepfer, D., & Jha, S. (2005). Plant Cell Reports, 24, 25–35.

    Article  CAS  Google Scholar 

  52. Verma, P. C., Rahman, L. U., Nagi, A. S., Jain, D. C., Khanuja, S. P. S., & Banerjee, S. (2007). Plant Biotechnology Reports, 1, 169–174.

    Article  Google Scholar 

  53. Swain, S. S., Sahu, L., Barik, D. P., & Chand, P. K. (2010). Scientia Horticulturae, 125, 461–468.

    Article  CAS  Google Scholar 

  54. Swain, S. S., Sahu, L., Pal, A., Barik, D., Pradhan, C., & Chand, P. K. (2012). World Journal of Microbiology and Biotechnology, 28, 729–739.

    Article  CAS  Google Scholar 

  55. Tiwari, R. K., Trivedi, M., Guang, Z. C., Guo, G. Q., & Zheng, G. C. (2007). Plant Cell Reports, 26, 199–210.

    Article  CAS  Google Scholar 

  56. Garg, S. (2001). Biotechnological approaches for genetic improvement and conservation of Coleus forskolii. Ph.D. Thesis, Lucknow, India: Lucknow University.

  57. Kuzma, L., Rozalskib, M., Walenckac, E., Rozalskac, B., & Wysokinska, H. (2007). Phytomedicine, 14, 31–35.

    Article  CAS  Google Scholar 

  58. Farkya, S., & Bisaria, V. S. (2008). Journal of Bioscience and Bioengineering, 105(2), 140–146.

    Article  CAS  Google Scholar 

  59. Tepfer, D. (1984). Cell, 37, 959–967.

    Article  CAS  Google Scholar 

  60. Kamada, H., Okamura, N., Satake, M., Harada, H., & Shimomura, K. (1986). Plant Cell Reports, 5, 239–242.

    Article  CAS  Google Scholar 

  61. Fu, C. X., De Zhao, X., Xue, X. F., Jin, Z. P., & Ma, F. S. (2005). Process Biochemistry, 40, 3789–3794.

    Article  CAS  Google Scholar 

  62. Palazón, J., Cusidó, R. M., Roig, C., & Piñol, M. T. (1998). Plant Cell Reports, 17, 384–390.

    Article  Google Scholar 

  63. Palazón, J., Cusidó, R. M., Gonzalo, J., Bonfill, M., Morales, S., & Piñol, M. T. (1998). J Plant Physiology, 153, 712–718.

    Article  Google Scholar 

  64. Bulgakov, V. P., Khodakovskaya, M. V., Labetskaya, N. V., Tchernoded, G. K., & Zhuravlev, Y. N. (1998). Phytochemistry, 49, 1929–1934.

    Article  CAS  Google Scholar 

  65. Bonhomme, V., Laurain Mattar, D., & Fliniaux, M. A. (2000). Journal of Natural Products, 63, 1249–1252.

    Article  CAS  Google Scholar 

  66. Hu, Z.-B., & Du, M. (2006). Journal of Integrative Plant Biology, 48(2), 121–127.

    Article  CAS  Google Scholar 

  67. Oksman-Caldentey, K. M., Sevón, N., Vanhala, L., & Hiltunen, R. (1994). Plant Cell Tissue and Organ Culture, 38, 263–272.

    Article  CAS  Google Scholar 

  68. Jung, K. H., Kwak, S. S., Kim, S. W., Lee, H., Choi, C. Y., & Lin, J. R. (1992). Biotechnology Letters, 14(8), 695–700.

    Article  CAS  Google Scholar 

  69. Young-Am, C., Yu, H., Song, J., Chun, H., & Park, S. (2000). Biotechnology Letters, 22, 1527–1530.

    Article  CAS  Google Scholar 

  70. Liu, C. Z., Wang, Y. C., Ouyang, F., Ye, H. C., & Li, G. F. (1997). Biotechnology Letters, 19(9), 927–929.

    Article  CAS  Google Scholar 

  71. Jacob, A., & Malpathak, N. (2004). Current Science, 87(10), 1442–1447.

    CAS  Google Scholar 

  72. Uozumi, N., Kohketsu, K., Kondo, O., Honda, H., & Kobayashi, T. (1991). Journal of Fermentation Bioengineering, 72, 457–460.

    Article  CAS  Google Scholar 

  73. Avigad, G. (1982). Sucrose and other disaccharides. In F. A. Loewus & W. Tanner (Eds.), Plant carbohydrates (Vol. 13A, pp. 217–271). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  74. Borkowska, B., & Szczebra, J. (1991). Journal of Experimental Botany, 42, 911–915.

    Article  CAS  Google Scholar 

  75. Sim, S. J., Chang, H. N., Liu, J. R., & Jung, K. H. (1994). Journal of Fermentation Bioengineering, 78, 229–234.

    Article  CAS  Google Scholar 

  76. Xu, H., Park, J. H., Kim, Y. K., Park, N., Lee, S. Y., & Park, S. U. (2009). Journal of Medicinal Plant Research, 3(11), 978–981.

    CAS  Google Scholar 

  77. Drewes, F. E., & Staden, J. V. (1995). Plant Growth Regulation, 17, 27–31.

    Article  CAS  Google Scholar 

  78. Shen, W. H., Petit, A., Guern, J., & Tempe, J. (1988). Proceedings of National Academy of Sciences USA, 58, 3417–3421.

    Article  Google Scholar 

  79. Deno, H., Yamagata, H., Emoto, T., Yoshioka, T., Yamada, Y., & Fujita, Y. (1987). Journal of Plant Physiology, 131, 315–323.

    Article  CAS  Google Scholar 

  80. Rodriguez-Talou, J., & Giulielti, A. M. (1995). Biotechnology Letters, 17, 1337–1342.

    Article  Google Scholar 

  81. Croes, A. F., Van der Berg, A. J. R., Bosveld, M., Breteler, H., & Wullems, G. J. (1989). Planta, 179, 43–50.

    Article  CAS  Google Scholar 

  82. Batra, J., Dutta, A., Singh, D., Kumar, S., & Sen, J. (2004). Plant Cell Reports, 23, 148–154.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The technical support provided by the Directors of the Institute of Minerals and Materials Technology (CSIR), Bhubaneswar, India, and of the Indian Institute of Technology, Kanpur, India, is gratefully acknowledged. One of the authors (P. Nayak) acknowledges the Council of Scientific and Industrial Research (CSIR), Government of India, for financial support in form of a Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep K. Chand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, P., Sharma, M., Behera, S.N. et al. High-Performance Liquid Chromatographic Quantification of Plumbagin from Transformed Rhizoclones of Plumbago zeylanica L.: Inter-Clonal Variation in Biomass Growth and Plumbagin Production. Appl Biochem Biotechnol 175, 1745–1770 (2015). https://doi.org/10.1007/s12010-014-1392-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1392-2

Keywords

Navigation