Skip to main content
Log in

Biphasic Fermentation Is an Efficient Strategy for the Overproduction of δ-Endotoxin from Bacillus thuringiensis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study illustrates a biphasic solid-state fermentation (SSF) strategy for the overproduction of δ-endotoxin from Bacillus thuringiensis subsp. kurstaki (Btk) and also purification of δ-endotoxin from the solid-fermented medium. The fermentation strategy had two phases (biphasic); i.e., the first short phase was semisolid state (12 h), and the remaining long phase was strict SSF. To achieve the biphasic SSF, after 12 h (150 rpm, 37 °C) fermentation of the medium [Luria-Bertani (LB) supplemented with 30 % (w/v) raw soybean flour (phase I)], the supernatant in it was completely centrifuged out (1,000×g, 10 min) aseptically for harvesting the extracellular enzymes as by-product. The resultant wet solid matter without free-flowing liquid but with embedded Btk was incubated 60 h more (phase II) for enhancing δ-endotoxin production at static condition (37 °C). Coupled with this, δ-endotoxin was purified by the modified phase separation method, and its purity was physically confirmed by both staining and microscopic techniques. The maximum δ-endotoxin yield from solid medium (48 h) was 15.8 mg/mL (recovery was 55–59 %) LB-equivalent, while that of LB control (recovery was 95 %) was only 0.43 mg/mL (72 h), i.e., thus, in comparison, 36.74-fold more yield in solid medium obtained by 24 h less gestation period. The purified crystal proteins showed apparent molecular weights (MWs) of 45, 35, and 6 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Briefly, this unique study physically demonstrates how Btk δ-endotoxin is purified (95–99 % purity) from solid-fermented matter for the first time, coupled with its overproduction at the expense of only 21.5 % higher production cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Martin, P., & Travers, R. (1989). Applied and Environmental Microbiology, 55, 2437–2442.

    CAS  Google Scholar 

  2. Nakamura, K., Oshie, K., Shimizu, M., Takada, Y., Oeda, K., & Ohkawa, H. (1990). Agricultural and Biological Chemistry.

    Google Scholar 

  3. de Maagd, R. A., Bravo, A., Berry, C., Crickmore, N., & Schnepf, H. E. (2003). Annual Review of Genetics, 37, 409–433.

    Article  Google Scholar 

  4. Bravo, A., Gill, S. S., & Soberón, M. (2007). Toxicon, 49, 423–435.

    Article  CAS  Google Scholar 

  5. Kati, H., Sezen, K., Nalcacioglu, R., & Demirbag, Z. (2007). The Journal of Microbiology, 45, 553–557.

    CAS  Google Scholar 

  6. Mohan, M., & Gujar, G. (2003). Journal Invertebrate Pathology, 82, 1–11.

    Article  CAS  Google Scholar 

  7. Anilkumar, K. J., Rodrigo-Simón, A., Ferré, J., Pusztai-Carey, J. M., Sivasupramaniam, S. M., & Moar, W. J. (2008). Applied Environmental Microbiology.

    Google Scholar 

  8. Brookes, M., Stark, R., & Campbell, R. (1987). For Serv. Bull: Science and Education Agency Tech. 1585.

    Google Scholar 

  9. Smitha, R. B., Jisha, V. N., Pradeep, S., Sarath Josh, M. K., & Benjamin, S. (2013). Journal of Bioscience and Bioengineering, 116, 595–601.

    Article  CAS  Google Scholar 

  10. Feitelson, J. S., Payne, J., & Kim, J. (1992). Nature Biotechnology.

    Google Scholar 

  11. Vasquez, M., Parra, C., Hubert, E., Espinoza, P., Theoduloz, C., & Meza-Basso, L. (1995). Journal of Invertebrate Pathology, 66, 143-–48.

    Article  Google Scholar 

  12. Vu, K. D., Tyagi, R. D., Valéro, J. R., & Surampalli, R. Y. (2010). Bioprocess and Biosystems Engineering.

    Google Scholar 

  13. Yezza, A., Tyagi, R. D., Valéro, J. R., & Surampalli, R. Y. (2005). Journal of Chemical Technology and Biotechnology, 80, 502–510.

    Article  CAS  Google Scholar 

  14. Khedher, S. B., Kamoun, A., Jaoua, S., & Zouari, N. (2011). New Biotechnology, 28, 705–712.

    Article  Google Scholar 

  15. Benjamin, S., & Pandey, A. (1996). Bioresource Technology, 55, 167–170.

    Article  CAS  Google Scholar 

  16. Aqel, H. (2012). Annals of Biological Research, 3, 1747–1756.

    CAS  Google Scholar 

  17. Guangrong, H., Tiejing, Y., Po, H., & Jiaxing, J. (2006). African Journal of Biotechnology, 5, 2433–2438.

    Google Scholar 

  18. Poopathi, S., & Kumar, A. (2003). Journal of Economic Entomology, 96, 1039–1044.

    Article  CAS  Google Scholar 

  19. Seong, C. N., & Choi, S. K. (2007). The Journal of Microbiology, 45, 402–408.

    Google Scholar 

  20. Kim, S., Kim, Y., & Rhee, I. K. (2001). Archives of Microbiology, 175, 458–461.

    Article  CAS  Google Scholar 

  21. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., & Randall, R. J. (1951). Journal of Chemical Biology, 193, 10–16.

    Google Scholar 

  22. Pendleton, I., & Morrison, R. (1966). Nature Biotechnology, 212, 728–729.

    Google Scholar 

  23. Neema, P. M. (2007). M.Sc. Thesis, Kerala Agricultural University, Kerala, India.

  24. Smitha, R. B., Jisha, V. N., Sajith, S., & Benjamin, S. (2013). Microbiology, 82, 794–800.

    Article  CAS  Google Scholar 

  25. Sarrafzadeh, M. H., Guiraud, J. P., Lagneau, C., Gaven, B., Carron, A., & Navarro, J. (2005). Current Microbiology, 51, 75–81.

    Article  CAS  Google Scholar 

  26. Zouari, N., Achour, O., & Jaoua, S. (2002). Journal of chemical Technology and Biotechnology.

    Google Scholar 

  27. Ghorbel-Frikha, B., Sellami-Kamoun, A., Fakhfakh, N., Haddar, A., Manni, L., & Nasri, M. (2005). Journal of Industrial Microbiology and Biotechnology.

    Google Scholar 

  28. Valicente, F. H., de Souza, T. E., Leite, M. I. S., Freire, F. L., & Vieira, C. M. (2010). Revista Brasileira de Milho e Sorgo, 9, 1–11.

    Google Scholar 

  29. Zhuang, L., Zhou, S., Wang, Y., Liu, Z., & Xu, R. (2011). Bioresource Technology, 102, 4820–4826.

  30. Yadav, J. S., Chowdhury, S., & Chaudhuri, S. R. (2010). Journal of Biological Sciences, 10, 424–431.

  31. Cheng, C. Z. L., Zaohe, W., & Juan, F. (2006). CAB abstract. Available via Dialog.

  32. Schnepf, E., Crickmore, N., van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D. R., & Dean, D. H. (1998). Microbiology Molecular Biology Review, 62, 775–806.

    CAS  Google Scholar 

  33. Adjalle, K. D., Vu, D. K., Tyagi, R. D., Brar, S. K., Valéro, J. R., & Surampalli, R. Y. (2011). Bioprocess and Biosystem Engineering, 34, 237–246.

    Article  CAS  Google Scholar 

  34. Wei, J. Z., Hale, K., Carta, L., Platzer, E., Wong, C., Fang, S. C., & Aroian, R. V. (2003). Proceedings of the National Academy of Sciences, USA.

    Google Scholar 

  35. Hasan, M. H., Akter, A., Ilias, M., Khan, S. N., & Hoq, M. M. (2010). Bangladesh Journal of Microbiology, 27, 51–55.

    Google Scholar 

  36. Kumar, D., Venkatachalam, P., Govindarajan, N., Balakumaran, M., & Kalaichelvan, P. (2012). Global Veterinaria, 8, 433–439.

    CAS  Google Scholar 

  37. Margesin, R., Palma, N., Knauseder, F., & Schinner, F. (1992). Journal of Biotechnology, 24, 203–206.

    Article  CAS  Google Scholar 

  38. Kumar, G. N., Dykstra, J., Roberts, E. M., Jayanti, V. K., Hickman, D., Uchic, J., Yao, Y., Surber, B., Thomas, S., & Granneman, G. R. (1999). Drug Metabolism and Disposition, 27, 902–908.

    CAS  Google Scholar 

  39. Knowles, B. H., White, P. J., Nicholls, C. N., & Ellar, D. (1992). Proceedings of Biological Science, 248, 1–7.

    Article  CAS  Google Scholar 

  40. Ang, B. J., & Nickerson, K. W. (1978). Applied Environmental Microbiology, 36, 625–626.

    CAS  Google Scholar 

Download references

Acknowledgments

JVN is grateful to the University Grants Commission, Government of India for granting RGNF, and SRB is grateful to the University of Calicut for granting the University Research Fellowship. The Indian patent application no. 339/DEL/2012 dated February 7 is also acknowledged.

Conflict of Interest

The authors declare that there exist no competing financial or other interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sailas Benjamin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jisha, V.N., Babysarojam Smitha, R., Priji, P. et al. Biphasic Fermentation Is an Efficient Strategy for the Overproduction of δ-Endotoxin from Bacillus thuringiensis . Appl Biochem Biotechnol 175, 1519–1535 (2015). https://doi.org/10.1007/s12010-014-1383-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1383-3

Keywords

Navigation