Skip to main content
Log in

ROS and ABA Signaling Are Involved in the Growth Stimulation Induced by Low-Dose Gamma Irradiation in Arabidopsis Seedling

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

It has been well established that gamma rays at low doses have stimulatory effects on plant growth and development. However, our knowledge regarding the molecular mechanism underlying the growth stimulation remains limited. In this study, we report the role of reactive oxygen species (ROS) and abscisic acid (ABA) in the growth stimulation using irradiated Arabidopsis seeds. The results indicated that 50 Gy gamma irradiation presented maximal beneficial effects on germination index, root length, and fresh weight. The contents of hydrogen peroxide (H2O2) and activities of antioxidant enzymes under gamma irradiation were markedly higher than those of controls. ROS scavenging significantly suppressed the growth of the irradiated plants. Furthermore, endogenous ABA was induced under low-dose gamma irradiation. The growth stimulation and elevated H2O2 level were affected in the irradiated ABA-deficient mutant aba2-1 compared with the mutant control. Transcriptional expression analysis of selected genes revealed that several genes for ABA biosynthesis were upregulated, and the genes for ABA catabolic pathway and transport were differentially regulated in response to low-dose gamma irradiation. Our results suggest that ROS and ABA signaling play an essential role in the stimulatory effects of low-dose gamma irradiation and that ROS, as secondary molecules, mediate ABA signal transduction under irradiation in response to stress factors during plant growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bala, M., & Singh, K. P. (2013). Journal of Horticultural Science and Biotechnology, 88, 462–468.

    CAS  Google Scholar 

  2. He, S., Han, Y., Wang, Y., Zhai, H., & Liu, Q. (2009). Plant Cell, Tissue and Organ Culture, 96, 69–74.

    Article  CAS  Google Scholar 

  3. Kim, J.-H., Baek, M.-H., Chung, B. Y., Wi, S. G., & Kim, J.-S. (2004). Journal of Plant Biology, 47, 314–321.

    Article  CAS  Google Scholar 

  4. Wi, S. G., Chung, B. Y., Kim, J. S., Kim, J. H., Baek, M. H., Lee, J. W., & Kim, Y. S. (2007). Micron, 38, 553–564.

    Article  CAS  Google Scholar 

  5. Kim, J.-H., Chung, B. Y., Kim, J.-S., & Wi, S. G. (2005). Journal of Plant Biology, 48, 47–56.

    Article  CAS  Google Scholar 

  6. Marcu, D., Cristea, V., & Daraban, L. (2013). International Journal of Radiation Biology, 89, 219–223.

    Article  CAS  Google Scholar 

  7. Maity, J. P., Mishra, D., Chakraborty, A., Saha, A., Santra, S. C., & Ch&a, S. (2005). Radiation Physics and Chemistry, 74, 391–394.

    Article  CAS  Google Scholar 

  8. Calucci, L., Pinzino, C., Zandomeneghi, M., Capocchi, A., Ghiringhelli, S., Saviozzi, F., Tozzi, S., & Galleschi, L. (2003). Journal of Agricultural and Food Chemistry, 51, 927–934.

    Article  CAS  Google Scholar 

  9. Neill, S., Desikan, R., & Hancock, J. (2002). Current Opinion in Plant Biology, 5, 388–395.

    Article  CAS  Google Scholar 

  10. Yang, T., & Poovaiah, B. W. (2002). Proceedings of the National Academy of Sciences of the United States of America, 99, 4097–4102.

    Article  CAS  Google Scholar 

  11. Bailey-Serres, J., & Mittler, R. (2006). Plant Physiology, 141, 311.

    Article  CAS  Google Scholar 

  12. Mittler, R. (2002). Trends in Plant Science, 7, 405–410.

    Article  CAS  Google Scholar 

  13. Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004). Trends in Plant Science, 9, 490–498.

    Article  CAS  Google Scholar 

  14. Cho, H. S., Lee, H. S., & Pai, H.-S. (2000). Journal of Plant Biology, 43, 82–87.

    Article  CAS  Google Scholar 

  15. Moussa, H. R. (2008). Journal of New Seeds, 9, 89–99.

    Article  Google Scholar 

  16. Zaka, R. V., Ecasteele, C. M., & Misset, M. T. (2002). Journal of Experimental Botany, 53, 1979–1987.

    Article  CAS  Google Scholar 

  17. Seiler, C., Harshavardhan, V. T., Rajesh, K., Reddy, P. S., Strickert, M., Rolletschek, H., Scholz, U., Wobus, U., & Sreenivasulu, N. (2011). Journal of Experimental Botany, 62, 2615–2632.

    Article  CAS  Google Scholar 

  18. Ya, H., Chen, Q., Wang, W., Chen, W., Qin, G., & Jiao, Z. (2012). Journal of Radiation Research, 53, 558–569.

    Article  CAS  Google Scholar 

  19. Liu, Y., Ye, N., Liu, R., Chen, M., & Zhang, J. (2010). Journal of Experimental Botany, 61, 2979–2990.

    Article  CAS  Google Scholar 

  20. Ishibashi, Y., Tawaratsumida, T., Kondo, K., Kasa, S., Sakamoto, M., Aoki, N., Zheng, S. H., Yuasa, T., & Iwaya-Inoue, M. (2012). Plant Physiology, 158, 1705–1714.

    Article  CAS  Google Scholar 

  21. Wang, P., Du, Y., Guo, Y., Zhou, Y., Miao, C., & Song, C. (2006). Journal of Integrative Plant Biology, 48, 62–74.

    Article  CAS  Google Scholar 

  22. Patterson, B. D., MacRae, E. A., & Ferguson, I. B. (1984). Analytical Biochemistry, 139, 487–492.

    Article  CAS  Google Scholar 

  23. Giannopolitis, C. N., & Ries, S. K. (1977). Plant Physiology, 59, 309–314.

    Article  CAS  Google Scholar 

  24. Zhang, J., & Kirkham, M. B. (1994). Plant and Cell Physiology, 35, 785–791.

    CAS  Google Scholar 

  25. Bergmeyer, N. (1970). Methoden der enzymatischen Analyse (p. 636). Berlin: Akademie Verlag.

    Google Scholar 

  26. Schmittgen, T. D., & Livak, K. J. (2008). Nature Protocols, 3, 1101–1108.

    Article  CAS  Google Scholar 

  27. Sagi, M., & Fluhr, R. (2006). Plant Physiology, 141, 336–340.

    Article  CAS  Google Scholar 

  28. Leon-Kloosterziel, K. M., Gil, M. A., Ruijs, G. J., Jacobsen, S. E., Olszewski, N. E., Schwartz, S. H., Zeevaart, J. A., & Koornneef, M. (1996). The Plant Journal, 10, 655–661.

    Article  CAS  Google Scholar 

  29. Schwartz, S. H., Tan, B. C., Gage, D. A., Zeevaart, J. A., & McCarty, D. R. (1997). Science, 276, 1872–1874.

    Article  CAS  Google Scholar 

  30. Nambara, E., & Marion-Poll, A. (2005). Annual Review of Plant Biology, 56, 165–185.

    Article  CAS  Google Scholar 

  31. Kushiro, T., Okamoto, M., Nakabayashi, K., Yamagishi, K., Kitamura, S., Asami, T., Hirai, N., Koshiba, T., Kamiya, Y., & Nambara, E. (2004). The EMBO Journal, 23, 1647–1656.

    Article  CAS  Google Scholar 

  32. Saito, S., Hirai, N., Matsumoto, C., Ohigashi, H., Ohta, D., Sakata, K., & Mizutani, M. (2004). Plant Physiology, 134, 1439–1449.

    Article  CAS  Google Scholar 

  33. Priest, D. M., Ambrose, S. J., Vaistij, F. E., Elias, L., Higgins, G. S., Ross, A. R., Abrams, S. R., & Bowles, D. J. (2006). The Plant Journal, 46, 492–502.

    Article  CAS  Google Scholar 

  34. Lee, K. H., Piao, H. L., Kim, H. Y., Choi, S. M., Jiang, F., Hartung, W., Hwang, I., Kwak, J. M., Lee, I. J., & Hwang, I. (2006). Cell, 126, 1109–1120.

    Article  CAS  Google Scholar 

  35. Kang, J., Hwang, J. U., Lee, M., Kim, Y. Y., Assmann, S. M., Martinoia, E., & Lee, Y. (2010). Proceedings of the National Academy of Sciences of the United States of America, 107, 2355–2360.

    Article  CAS  Google Scholar 

  36. Kuromori, T., Miyaji, T., Yabuuchi, H., Shimizu, H., Sugimoto, E., Kamiya, A., Moriyama, Y., & Shinozaki, K. (2010). Proceedings of the National Academy of Sciences of the United States of America, 107, 2361–2366.

    Article  CAS  Google Scholar 

  37. Luckey, T. D. (2003). RSO Magazine, 8, 22–40.

    Google Scholar 

  38. Abdel-Hady, M. S., Okasha, E. M., Soliman, S. S. A., & Talaat, M. (2008). Australian Journal of Basic and Applied Sciences, 2, 401–405.

    CAS  Google Scholar 

  39. Singh, B., & Datta, P. S. (2010). Radiation Physics and Chemistry, 79, 819–825.

    Article  CAS  Google Scholar 

  40. Fornalski, K. W., Adamowski, Ł., Turowski, T. W., & Wojnarowicz, J. (2012). Nukleonika, 57, 421–426.

    CAS  Google Scholar 

  41. Kuzin, A. M. (1997). Bulletin of Experimental Biology and Medicine, 123, 313–315.

    Article  Google Scholar 

  42. Kuzin, A. M., Vagabova, M. E., & Revin, A. F. (1976). Radiobiology, 16, 259–261.

    CAS  Google Scholar 

  43. Kovalchuk, I., Molinier, J., Yao, Y., Arkhipov, A., & Kovalchuk, O. (2007). Mutation Research, 624, 101–113.

    Article  CAS  Google Scholar 

  44. Fan, X., Toivonen, P. M. A., Rajkowski, K. T., & Sokorai, K. J. B. (2003). Journal of Agricultural and Food Chemistry, 51, 1231–1236.

    Article  CAS  Google Scholar 

  45. Kovacs, E., & Keresztes, A. (2002). Micron, 33, 199–210.

    Article  CAS  Google Scholar 

  46. Esnault, M.-A., Legue, F., & Chenal, C. (2010). Environmental and Experimental Botany, 68, 231–237.

    Article  CAS  Google Scholar 

  47. Wi, S. G., Chung, B. Y., Kim, J.-S., Kim, J.-H., Baek, M.-H., & Lee, J.-W. (2006). Journal of Plant Biology, 49, 1–8.

    Article  CAS  Google Scholar 

  48. Kim, D. S., Kim, J.-B., Goh, E. J., Kim, W.-J., Kim, S. H., Seo, Y. W., Jang, C. S., & Kang, S.-Y. (2011). Journal of Plant Physiology, 168, 1960–1971.

    Article  CAS  Google Scholar 

  49. Sagi, M., & Fluhr, R. (2001). Plant Physiology, 126, 1281–1290.

    Article  CAS  Google Scholar 

  50. Taylor, W. R., Jones, D. T., & Segal, A. W. (1993). Protein Science, 2, 1675–1685.

    Article  CAS  Google Scholar 

  51. Sugimoto, M., Oono, Y., Gusev, O., Matsumoto, T., Yazawa, T., Levinskikh, M. A., Sychev, V. N., Bingham, G. E., Wheeler, R., & Hummerick, M. (2014). BMC Plant Biology, 14, 4.

    Article  Google Scholar 

  52. Croci, C. A., Arguello, J. A., Curvetto, N. R., & Orioli, G. A. (1991). International Journal of Radiation Biology, 59, 551–557.

    Article  CAS  Google Scholar 

  53. Gechev, T. S., Van Breusegem, F., Stone, J. M., Denev, I., & Laloi, C. (2006). Bioessays, 28, 1091–1101.

    Article  CAS  Google Scholar 

  54. Mittler, R., Vanderauwera, S., Suzuki, N., Miller, G., Tognetti, V. B., Vandepoele, K., Gollery, M., Shulaev, V., & Van Breusegem, F. (2011). Trends in Plant Science, 16, 300–309.

    Article  CAS  Google Scholar 

  55. DeLara, C. M., Jenner, T. J., Townsend, K. M., Marsden, S. J., & O'Neill, P. (1995). Radiation Research, 144, 43–49.

    Article  CAS  Google Scholar 

  56. Miyazaki, T., Hayakawa, Y., Suzuki, K., Suzuki, M., & Watanabe, M. (1990). Radiation Research, 124, 66–72.

    Article  CAS  Google Scholar 

  57. Kashino, G., Prise, K. M., Suzuki, K., Matsuda, N., Kodama, S., Suzuki, M., Nagata, K., Kinashi, Y., Masunaga, S., Ono, K., & Watanabe, M. (2007). Journal of Radiation Research, 48, 327–333.

    Article  Google Scholar 

  58. Chen, H., Li, F., Yuan, H., Xiao, X., Yang, G., & Wu, L. (2010). Journal of Radiation Research, 51, 651–656.

    Article  Google Scholar 

  59. Mei, T., Yang, G., Quan, Y., Wang, W., Zhang, W., Xue, J., Wu, L., Gu, H., Schettino, G., & Wang, Y. (2011). Journal of Radiation Research, 52, 159–167.

    Article  CAS  Google Scholar 

  60. Raghavendra, A. S., Gonugunta, V. K., Christmann, A., & Grill, E. (2010). Trends in Plant Science, 15, 395–401.

    Article  CAS  Google Scholar 

  61. Latif, H. H., Abdalla, M. A., & Farag, S. A. (2011). Turkish Journal of Biochemistry, 36, 230–236.

    CAS  Google Scholar 

  62. Jiang, M., & Zhang, J. (2002). Journal of Experimental Botany, 53, 2401–2410.

    Article  CAS  Google Scholar 

  63. Jia, W., & Zhang, J. (2000). Plant, Cell and Environment, 23, 1389–1395.

    Article  CAS  Google Scholar 

  64. Tossi, V., Lamattina, L., & Cassia, R. (2009). The New Phytologist, 181, 871–879.

    Article  CAS  Google Scholar 

  65. Nagata, T., Yamada, H., Du, Z., Todoriki, S., & Kikuchi, S. (2005). Journal of Agricultural and Food Chemistry, 53, 1022–1030.

    Article  CAS  Google Scholar 

  66. Sahr, T., Voigt, G., Schimmack, W., Paretzke, H. G., & Ernst, D. (2005). The New Phytologist, 168, 141–148.

    Article  CAS  Google Scholar 

  67. Barrero, J. M., Rodriguez, P. L., Quesada, V., Piqueras, P., Ponce, M. R., & Micol, J. L. (2006). Plant, Cell and Environment, 29, 2000–2008.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (11405147, 11375154 and 31300163). The authors express great gratitude to Prof. Le Jie, Institute of Botany, Chinese Academy of Sciences, Beijing, China, for providing the ABA-deficient mutant (aba2-1) of A. thaliana.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Jiao.

Additional information

Wencai Qi and Liang Zhang contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Suppl. Table 1

Accession numbers and primers of the genes used for real-time quantitative RT-PCR in this study. (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, W., Zhang, L., Feng, W. et al. ROS and ABA Signaling Are Involved in the Growth Stimulation Induced by Low-Dose Gamma Irradiation in Arabidopsis Seedling. Appl Biochem Biotechnol 175, 1490–1506 (2015). https://doi.org/10.1007/s12010-014-1372-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1372-6

Keywords

Navigation