Skip to main content
Log in

Evaluation of the Removal of Pyrene and Fluoranthene by Ochrobactrum anthropi, Fusarium sp. and Their Coculture

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Fluoranthene and pyrene are polycyclic aromatic hydrocarbons of high molecular weight that are recalcitrant and toxic to humans; therefore, their removal from the environment is crucial. From hydrocarbon-contaminated soil, 25 bacteria and 12 filamentous fungi capable of growth on pyrene and fluoranthene as the sole carbon and energy source were isolated. From these isolates, Ochrobactrum anthropi BPyF3 and Fusarium sp. FPyF1 were selected and identified because they grew quickly and abundantly in both hydrocarbons. Furthermore, O. anthropi BPyF3 and Fusarium sp. FPyF1 were most efficient at removing pyrene (50.39 and 51.32 %, respectively) and fluoranthene (49.85 and 49.36 %, respectively) from an initial concentration of 50 mg L−1 after 7 days of incubation. Based on this and on the fact that there was no antagonism between the two microorganisms, a coculture composed of O. anthropi BPyF3 and Fusarium sp. FPyF1 was formed to remove fluoranthene and pyrene at an initial concentration of 100 mg L−1 in a removal kinetic assay during 21 days. Fluoranthene removal by the coculture was higher (87.95 %) compared with removal from the individual cultures (68.95 % for Fusarium sp. FPyF1 and 64.59 % for O. anthropi BPyF3). In contrast, pyrene removal by the coculture (99.68 %) was similar to that obtained by the pure culture of Fusarium sp. FPyF1 (99.75 %). The kinetics of removal for both compounds was adjusted to a first-order model. This work demonstrates that the coculture formed by Fusarium sp. FPyF1 and O. anthropi BPyF3 has greater potential to remove fluoranthene than individual cultures; however, pyrene can be removed efficiently by Fusarium sp. FPyF1 alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Verdin, A., Lounes-Hadj Sahroiui, A., & Durand, R. (2004). International Biodeterioration & Biodegradation, 53, 65–70.

    Article  CAS  Google Scholar 

  2. Kaushik, C. P., & Haritsh, A. K. (2006). Our Earth, 3, 1–7.

    Google Scholar 

  3. Passarini, M. R. Z., Rodrigues, M. V. N., Da Silva, M., & Sette, L. D. (2011). Marine Pollution Bulletin, 62, 364–370.

    Article  CAS  Google Scholar 

  4. Juhasz, A., & Naidu, R. (2000). Environmental Microbiology, 89, 642–650.

    CAS  Google Scholar 

  5. Rodrígues, A. C., Wuertz, S., Brito, A. G., & Melo, L. F. (2005). Biotechnology and Bioengineering, 90, 281–289.

    Article  Google Scholar 

  6. Dean-Ross, D., Moody, J. D., Freeman, J. P., Doerge, D. R., & Cerniglia, C. E. (2001). FEMS Microbiology Letters, 204, 205–211.

    Article  CAS  Google Scholar 

  7. Moody, J. D., Freeman, J. P., & Cerniglia, C. E. (2005). Biodegradation, 16, 513–526.

    Article  CAS  Google Scholar 

  8. Yuan, S. Y., Wei, S. H., & Chang, B. V. (2000). Chemosphere, 41, 1463–1468.

    Article  CAS  Google Scholar 

  9. Hofrichter, M., Schneibner, K., Schneegab, I., & Fritzche, W. (1998). Applied and Environmental Microbiology, 64, 399–404.

    CAS  Google Scholar 

  10. Cajthaml, T., Erbanova, P., Sasek, V., & Moeder, M. (2006). Chemosphere, 64, 560–564.

    Article  CAS  Google Scholar 

  11. Nagpal, V., Srinivasan, M. C., & Paknikar, K. M. (2008). Journal of Microbiology, 48, 134–141.

    CAS  Google Scholar 

  12. Romero, M. C., Salvioli, M. L., Cazau, M. C., & Arambarri, A. M. (2002). Environmental Pollution, 117, 159–163.

    Article  CAS  Google Scholar 

  13. Bouchez, M., Blanchet, D., Bardin, V., Haesler, F., & Vandescasteele, J. P. (1999). Biodegradation, 10, 429–435.

    Article  CAS  Google Scholar 

  14. Boonchan, S., Britz, M. L., & Stantey, G. A. (2000). Applied and Environmental Microbiology, 66, 1007–1019.

    Article  CAS  Google Scholar 

  15. Hammel, K. (1995). Environmental Health Perspectives, 103, 41–43.

    Article  CAS  Google Scholar 

  16. Cerniglia, C. E. (1997). Journal of Industrial Microbiology and Biotechnology, 19, 324–333.

    Article  CAS  Google Scholar 

  17. Chaillan, F., Flèche, A. L., Bury, E., Phantavong, Y., Grimont, P., Saliot, A., & Oudot, J. (2004). Research in Microbiology, 155, 587–595.

    Article  CAS  Google Scholar 

  18. Bogardt, A. H., & Hemmingsen, B. B. (1992). Applied and Environmental Microbiology, 58, 2579–2582.

    CAS  Google Scholar 

  19. Birnboim, H., & Doly, J. (1979). Nucleic Acids Research, 7, 1513–1523.

    Article  CAS  Google Scholar 

  20. White, T.J., Bruns, T., Lee, S. and Taylor, J. (1990). in PCR protocols: a guide to methods and applications (Innes M.A., Gelfand D.H., Sninsky J.J. and White T.J., ed.), Academic Press, San Diego, CA, pp. 315–322.

  21. Murray, M. G., & Thompson, W. F. (1980). Nucleic Acids Research, 8, 4321–4325.

    Article  CAS  Google Scholar 

  22. Relman, D.A. (1993). in Diagnostic Molecular Microbiology, Principles and Applications (Persing D.H., Smith T.F., Tenover F.C. and White T.J., eds), ASM Press, Washington DC, pp. 489–495.

  23. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Journal of Molecular Biology, 215, 403–410.

    Article  CAS  Google Scholar 

  24. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). Nucleic Acids Research, 25, 4876–4882.

    Article  CAS  Google Scholar 

  25. Galtier, N., Gouy, M., & Gautier, C. (1996). Computer Applications in the Biosciences, 12, 543–548.

    CAS  Google Scholar 

  26. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). Molecular Biology and Evolution, 28, 2731–2739.

    Article  CAS  Google Scholar 

  27. Rosselló-Mora, R., & Amann, R. (2001). FEMS Microbiology Reviews, 25, 39–67.

    Article  Google Scholar 

  28. Machín-Ramírez, C., Morales, D., Martínez-Morales, F., Okoh, A. I., & Trejo-Hernández, M. R. (2010). International Biodeterioration & Biodegradation, 64, 538–544.

    Article  Google Scholar 

  29. Radtke, C., Cook, W. S., & Anderson, A. (1994). Applied Microbiology and Biotechnology, 41, 274–280.

    Article  CAS  Google Scholar 

  30. Janbandhu, A., & Fulekar, M. H. (2011). Journal of Hazardous Materials, 187, 333–340.

    Article  CAS  Google Scholar 

  31. Ye, J. S., Yin, H., Qiang, J., Peng, H., Quin, H. M., Zhang, N., & He, B. Y. (2011). Journal of Hazardous Materials, 185, 174–181.

    Article  CAS  Google Scholar 

  32. Capotorti, G., Digianvincenzo, P., Cesti, P., Bernardi, A., & Guglielmetti, G. (2004). Biodegradation, 15, 79–85.

    Article  CAS  Google Scholar 

  33. Thion, C., Cébron, A., Beguiristain, T., & Leyval, C. (2013). Biodegradation, 24, 569–581.

    Article  CAS  Google Scholar 

  34. Wang, J., Li, F., Li, X., Wang, X., Li, X., Su, Z., Zhang, H., & Guo, S. (2013). Journal of Environmental Science Health A Toxicol Hazard Substances Environmental Engineering, 48, 1677–1684.

    Article  Google Scholar 

  35. Lin, Y., & Cai, L. X. (2008). Marine Pollution Bulletin, 57, 703–706.

    Article  CAS  Google Scholar 

  36. Arulazhagan, P., & Vasudevan, N. (2011). Marine Pollution Bulletin, 62, 388–394.

    Article  CAS  Google Scholar 

  37. Chulalaksananukul, S., Gadd, G. M., Sangvanich, P., Sihanonth, P., Piapukiew, J., & Vangnai, A. S. (2006). FEMS Microbiology Letters, 262, 99–106.

    Article  CAS  Google Scholar 

  38. Rafin, C., Potin, O., Veignie, E., Lounes Hadj-Sahraoui, A., & Sanchozle, M. (2000). Environmental Pollution, 21, 311–329.

    CAS  Google Scholar 

  39. Yamada, T., Takahama, Y., & Yamada, Y. (2008). Bioscience Biotechnology and Biochemistry, 72, 1264–1271.

    Article  CAS  Google Scholar 

  40. Ferhat, S., Mnif, S., Badis, A., Eddouaouda, K., Alouaoui, R., Boucherit, A., Mhiri, N., Moulai-Mostefa, N., & Sayadi, S. (2011). International Biodeterioration & Biodegradation, 65, 1182–1188.

    Article  CAS  Google Scholar 

  41. Li, X., Li, P., Lin, X., Zhang, C., Li, Q., & Gonz, Z. (2008). Journal of Hazardous Materials, 150, 21–26.

    Article  CAS  Google Scholar 

  42. Ghazali, F. M., Rahman, R. N. Z. A., Salle, A. B., & Basri, M. (2004). International Biodeterioration & Biodegradation, 54, 61–67.

    Article  CAS  Google Scholar 

  43. Jacques, R. J. S., Okeke, B. C., Bento, F. M., Teixeira, A. S., Peralba, M. C. R., & Camargo, F. A. O. (2008). Bioresource Technology, 99, 2637–2643.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant SIP20140329 from the Instituto Politécnico Nacional (IPN). D.K.O.G. acknowledges Consejo Nacional de Ciencia y Tecnología (CONACyT) and the Programa Institucional de Formación de Investigadores (PIFI), IPN, for scholarships. E.C.U., J.C.C.D., J.A.C.M. and J.J.R. appreciate the COFAA, and EDI, IPN fellowships and support from the SNI and CONACyT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jan-Roblero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortega-González, D.K., Cristiani-Urbina, E., Flores-Ortíz, C.M. et al. Evaluation of the Removal of Pyrene and Fluoranthene by Ochrobactrum anthropi, Fusarium sp. and Their Coculture. Appl Biochem Biotechnol 175, 1123–1138 (2015). https://doi.org/10.1007/s12010-014-1336-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1336-x

Keywords

Navigation