Skip to main content
Log in

Biophysicochemical Characterization of an Alkaline Protease from Beauveria sp. MTCC 5184 with Multiple Applications

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study illustrates the biophysicochemical properties of an alkaline protease, BAP (Beauveria sp. alkaline protease) from Beauveria sp. MTCC 5184. This protease exhibited maximum activity at 50 °C, pH 9.0, and stability in a broad pH range, in the presence of organic solvents, denaturants, as well as detergents. Wash performance studies revealed that BAP was able to remove blood clots/stains from blood-soaked cloth. Peptide mass fingerprinting results demonstrated partial homology of BAP with subtilisin-like proteinase. BAP showed catalytic activity against natural as well as synthetic substrates. Active site characterization of BAP confirmed the involvement of serine, tryptophan, and aspartic acid in catalytic activity. Detailed kinetic and thermodynamic studies of BAP demonstrated that the activation energy (Ea) for casein hydrolysis was 82.55 kJ/M, the specificity constant (Kcat/K m), and the values of ∆G (change in Gibbs free energy) decreased with increase in temperature, whereas ∆H (change in enthalapy) and ∆S (change in entropy) were constant. The results of the present study indicate that BAP has potential for applications as detergent additive, in peptide synthesis, and in basic research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shankar, S., Rao, M., & Laxman, R. S. (2011). Process Biochemistry, 46, 579–585.

    Article  CAS  Google Scholar 

  2. Rao, M. B., Tanksale, A. M., Ghatge, M. S., & Deshpande, V. V. (1998). Microbiology and Molecular Biology Reviews, 62, 597–635.

    CAS  Google Scholar 

  3. Gupta, R., Beg, Q. K., & Lorenz, P. (2002). Applied Microbiology and Biotechnology, 59, 15–32.

    Article  CAS  Google Scholar 

  4. Karbalaei-Heidari, H. R., Shahbazi, M., & Absalan, G. (2013). Applied Biochemistry and Biotechnology, 170, 573–586.

    Article  CAS  Google Scholar 

  5. Paul, T., Das, A., Mandal, A., Halder, S. K., DasMohapatra, P. K., Pati, B. R., & Mondal, K. C. (2013). Waste Biomass Valor. doi:10.1007/s12649-013-9265-4.

    Google Scholar 

  6. Zambre, V. P., Nilegaonkar, S. S., & Kanekar, P. P. (2013). IIOAB Letter. doi:10.5195/iioablett.2013.19.

    Google Scholar 

  7. Makhdum, Z., Rehman, H., Larik, J. M., Bux, P., & Hameed, A. (2013). Journal of Applied Animal Research, 41, 218–222.

    Article  CAS  Google Scholar 

  8. Boyce, A., & Walsh, G. (2012). Chemosphere, 88, 211–218.

    Article  CAS  Google Scholar 

  9. More, S. V., Khandelwal, H. B., Joseph, M. A., & Laxman, R. S. (2013). Journal of Natural Fibres, 10, 98–111.

    Article  CAS  Google Scholar 

  10. Shankar, S., More, S. V., & Laxman, R. S. (2010). Kathmandu University Journal of Science Engineering & Technology, 6, 60–69.

    Google Scholar 

  11. Wang, S. L., Yang, C. H., Liang, T. W., & Yen, Y. H. (2008). Bioresource Technology, 99, 3700–3707.

    Article  CAS  Google Scholar 

  12. Ghorbel, B., Kamoun, A. S., & Nasri, M. (2003). Enzyme and Microbial Technology, 32, 513–518.

    Article  CAS  Google Scholar 

  13. Gupta, A., & Khare, S. K. (2009). Critical Reviews in Biotechnology, 29, 44–54.

    Article  CAS  Google Scholar 

  14. Vijayaraghavan, P., Vijayan, A., Arun, A., Jenisha, J. K., & Vincent, S. G. P. (2012). SpringerPlus, 1, 76–84.

    Article  Google Scholar 

  15. Patel, G. K., Kawale, A. A., & Sharma, A. K. (2012). Plant Physiology & Biochemistry, 52, 104–111.

    Article  CAS  Google Scholar 

  16. Rathinaraj, K., Sakhare, P. Z., Sachindra, N. M., & Mahendrakar, N. S. (2010). Food Bioprocess Technology, 3, 783–788.

    Article  Google Scholar 

  17. Erlacher, A., Sousa, F., Schroeder, M., Jus, S., Kokol, V., Cavaco-Paulo, A., & Guebitz, G. M. (2006). Biotechnology Letter, 28, 703–710.

    Article  CAS  Google Scholar 

  18. Pena-Montes, C., González, A., Castro-Ochoa, D., & Farres, A. (2008). Applied Microbiology & Biotechnology, 78, 603–612.

    Article  CAS  Google Scholar 

  19. Laxman, R. S., Shankar, S., More, S. V., Khandelwal, H. B., Narasimhan, C. B. K., Palanivel, S. & Balaram, P. (2013). Euro. Patent. EP 2531596. US. Patent. US 20130095523

  20. Laxman, R. S., Sonawane, A. P., More, S. V., Rao, B. S., Rele, M. V., Jogdand, V. V., Deshpande, V. V., & Rao, M. B. (2005). Process Biochemistry, 40, 3152–3158.

    Article  CAS  Google Scholar 

  21. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  22. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  23. Shashidhara, K. S., & Gaikwad, S. M. (2009). International Journal of Biological Macromolecule, 44, 112–115.

    Article  CAS  Google Scholar 

  24. Barberis, S., Quiroga, E., Morcelle, S., Priolo, N., & Luco, J. M. (2006). Journal of Molecular Catalysis B: Enzymatic, 38, 95–103.

    Article  CAS  Google Scholar 

  25. Gupta, A., & Khare, S. K. (2007). Enzyme & Microbial Technology, 42, 11–16.

    Article  CAS  Google Scholar 

  26. Ogino, H., Watanabe, F., Yamada, M., Nakagawa, S., Hirose, T., Noguchi, A., Yasuda, M., & Ishikawa, H. (1999). Journal of Bioscience & Bioengineering, 87, 61–68.

    Article  CAS  Google Scholar 

  27. Barberis, S., Quiroga, E., Arribére, M. C., & Priolo, N. (2002). Journal of Molecular Catalysis B: Enzymatic, 17, 39–47.

    Article  CAS  Google Scholar 

  28. Gupta, A., Roy, I., Khare, S. K., & Gupta, M. N. (2005). Journal of Chromatography. A, 1069, 155–161.

    Article  CAS  Google Scholar 

  29. Ruiz, D. M., & De Castro, R. E. (2007). Journal of Industrial Microbiology & Biotechnology, 34, 111–115.

    Article  CAS  Google Scholar 

  30. Hajji, M., Kanoun, S., Nasri, M., & Gharsallah, N. (2007). Process Biochemistry, 42, 791–797.

    Article  CAS  Google Scholar 

  31. Esposito, T. S., Marcuschi, M., Amatal, I. P. G., Carvalho, L. B., & Bezerra, R. S. (2010). Journal of Agricultural Food Chemistry, 58, 6433–6439.

    Article  CAS  Google Scholar 

  32. Phadatare, S. U., Srinivasan, M. C., & Deshpande, V. V. (1993). Enzyme & Microbial Technology, 15, 72–76.

    Article  CAS  Google Scholar 

  33. Tanksale, A., Manish, C. P., Rao, M., & Deshpande, V. (2001). Biotechnology Letter, 23, 51–54.

    Article  CAS  Google Scholar 

  34. Sindhu, R., Suprabha, G. N., & Shashidhar, S. (2009). African Journal of Microbiological Research, 3, 515–522.

    CAS  Google Scholar 

  35. Pappin, D. J. C., Hojrup, P., & Bleasby, A. J. (1993). Current Biology, 3, 327–332.

    Article  CAS  Google Scholar 

  36. Sutar, I. I., Srinivasan, M. C., & Vartak, H. G. (1991). Biotechnology Letter, 13, 119–124.

    Article  CAS  Google Scholar 

  37. Tsuchiya, K., Arai, T., Seki, K., & Kimura, T. (1987). Agricultural BioChemistry, 51, 2959–2965.

    Article  CAS  Google Scholar 

  38. Bidochka, M. J., & Khachatourians, G. G. (1987). Applied & Environmental Biology, 53, 1679–1684.

    CAS  Google Scholar 

  39. Pol, D., Menon, V., & Rao, M. (2012). Extremophiles, 16, 135–146.

    Article  CAS  Google Scholar 

  40. Singh, R. S., Saini, G. K., & Kennedy, J. F. (2010). Carbohydrate Polymer, 81, 252–259.

    Article  CAS  Google Scholar 

  41. Marin, E., Sanchez, L., Perez, M. D., Puyol, P., & Calvo, M. (2003). Journal of Food Science, 68, 89–93.

    Article  CAS  Google Scholar 

  42. Gote, M. M., Khan, M. I., & Khire, J. M. (2007). Enzyme & Microbial Technology, 40, 1312–1320.

    Article  CAS  Google Scholar 

  43. Phadtare, S., Rao, M., & Deshpande, V. (1997). Archive of Microbiology, 166, 414–417.

    Article  Google Scholar 

  44. Chellappan, S., Jasmin, C., Basheer, S. M., Kishore, A., Elyas, K. K., Bhat, S. G., & Chandrasekaran, M. (2011). Journal of Industrial Microbiology & Biotechnology, 38, 743–752.

    Article  CAS  Google Scholar 

  45. Savitha, S., Sadhasivam, S., Swaminathan, K., & Lin, F. H. (2011). Journal of the Taiwan Institute of Chemical Engineers, 42, 298–304.

    Article  CAS  Google Scholar 

  46. Papagianni, M., & Sergelidis, D. (2014). Applied Biochemistry & Biotechnology, 172, 3926–3938.

    Article  CAS  Google Scholar 

  47. Cavello, I. A., Hours, R. A., Rojas, N. L., & Cavalitto, S. F. (2013). Process Biochemistry, 48, 972–978.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Shiv Shankar is grateful to the Council of Scientific and Industrial Research (CSIR) for financial assistance. Authors acknowledge the financial support from NMITLI project funded by CSIR, Govt. of India, and Dr. Mahesh J Kulkarni for analysis of samples in MALDI.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiv Shankar or Ryali Seeta Laxman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shankar, S., Laxman, R.S. Biophysicochemical Characterization of an Alkaline Protease from Beauveria sp. MTCC 5184 with Multiple Applications. Appl Biochem Biotechnol 175, 589–602 (2015). https://doi.org/10.1007/s12010-014-1314-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1314-3

Keywords

Navigation