Skip to main content
Log in

Development of Novel Simple Sequence Repeat Markers in Bitter Gourd (Momordica charantia L.) Through Enriched Genomic Libraries and Their Utilization in Analysis of Genetic Diversity and Cross-Species Transferability

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Microsatellite or simple sequence repeat (SSR) markers are the preferred markers for genetic analyses of crop plants. The availability of a limited number of such markers in bitter gourd (Momordica charantia L.) necessitates the development and characterization of more SSR markers. These were developed from genomic libraries enriched for three dinucleotide, five trinucleotide, and two tetranucleotide core repeat motifs. Employing the strategy of polymerase chain reaction-based screening, the number of clones to be sequenced was reduced by 81 % and 93.7 % of the sequenced clones contained in microsatellite repeats. Unique primer-pairs were designed for 160 microsatellite loci, and amplicons of expected length were obtained for 151 loci (94.4 %). Evaluation of diversity in 54 bitter gourd accessions at 51 loci indicated that 20 % of the loci were polymorphic with the polymorphic information content values ranging from 0.13 to 0.77. Fifteen Indian varieties were clearly distinguished indicative of the usefulness of the developed markers. Markers at 40 loci (78.4 %) were transferable to six species, viz. Momordica cymbalaria, Momordica subangulata subsp. renigera, Momordica balsamina, Momordica dioca, Momordica cochinchinesis, and Momordica sahyadrica. The microsatellite markers reported will be useful in various genetic and molecular genetic studies in bitter gourd, a cucurbit of immense nutritive, medicinal, and economic importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Miniraj, N., Prasanna, K. P., & Peter, K. V. (1993). Bitter gourd Momordica spp. In G. Kalloo & B. O. Bergh (Eds.), Genetic improvement of vegetable plants (pp. 239–246). Oxford: Pergamon Press.

    Google Scholar 

  2. Grubben, G. J. H. (1977). Tropical vegetable and their genetic resources (pp. 51–52). Rome: IBPGR.

    Google Scholar 

  3. Behera, T. K. (2004). Heterosis in bitter gourd. In P. K. Singh, S. K. Dasgupta, & S. K. Tripathi (Eds.), Hybrid vegetable development (pp. 217–221). NY: The Haworth Press.

    Google Scholar 

  4. Alam, S., Asad, M., Asdaq, S. M., & Prasad, V. S. (2009). Antiulcer activity of methanolic extract of Momordica charantia L. in rats. Journal of Ethnopharmacology, 123, 464–469.

    Article  Google Scholar 

  5. Baynes, J. W. (1995). Mechanistic approach to diabetes (2nd ed., pp. 203–231). Chichester, UK: Ellis Harwood Limited.

    Google Scholar 

  6. Ross, I. A. (1999). Medicinal plants of the world (pp. 213–219). NJ, USA: Humana Press.

    Google Scholar 

  7. Ray, R. B., Raychoudhuri, A., Steele, R., & Nerurkar, P. (2010). Bitter melon (Momordica charantia) extract inhibits breast cancer cell proliferation by modulating cell cycle regulatory genes and promotes apoptosis. Cancer Research, 70, 1925–1931.

    Article  CAS  Google Scholar 

  8. Robinson, R. W., & Decker-Walters, D. S. (1997). Cucurbits. Wallingford, Oxford, UK: CAB International.

    Google Scholar 

  9. Behera, T. K., Dey, S. S., & Sirohi, P. S. (2006). ‘DBGy-201’ and ‘DBGy-202’: Two gynoecious lines in bitter gourd (Momordica charantia L.) isolated from indigenous source. Indian Journal of Genetics and Plant Breeding, 66, 61–62.

    Google Scholar 

  10. Dey, S. S., Singh, A. K., Chandel, D., & Behera, T. K. (2006). Genetic diversity of bitter gourd (Momordica charantia L.) genotypes revealed by RAPD markers and agronomic traits. Scientia Horticulturae, 109, 21–28.

    Article  CAS  Google Scholar 

  11. Paul, A., & Raychaudhuri, S. S. (2010). Medicinal uses and molecular identification of two Momordica charantia varieties—A review. Electronic Journal of Biology, 6–2, 43–51.

    Google Scholar 

  12. Singh, A. K., Behera, T. K., Chandel, D., Sharma, P., & Singh, N. K. (2007). Assessing genetic relationships among bitter gourd (Momordica charantia L.) accessions using inter-simple sequence repeat (ISSR) markers. Journal of Horticultural Science and Biotechnology, 82, 217–222.

    CAS  Google Scholar 

  13. Gaikwad, A. B., Behra, T. K., Singh, A. K., Chandel, D., Karihaloo, J. L., & Staub, J. E. (2008). Amplified fragment length polymorphism analysis provides strategies for improvement of bitter gourd (Momordica charantia L.). Scientia Horticulturae, 43, 127–133.

    CAS  Google Scholar 

  14. Powell, W., Machray, G. C., & Provan, J. (1996). Polymorphism revealed by simple sequence repeats. Trends in Plant Sciences, 1–7, 215–221.

    Article  Google Scholar 

  15. Wang, S. Z., Pan, L., Hu, K., Chen, C. Y., & Ding, Y. (2010). Development and characterization of polymorphic microsatellite markers in Momordica charantia (Cucurbitaceae). American Journal of Botany, 97, E75–E78.

    Article  CAS  Google Scholar 

  16. Guo, D. L., Zhang, J. P., Xue, Y. M., & Hou, X. G. (2012). Isolation and characterization of 10 SSR markers of Momordica charantia (Cucurbitaceae). American Journal of Botany, 99, E182–E183.

    Article  Google Scholar 

  17. Ji, Y., Luo, Y., Hou, B., Wang, W., Zhao, J., Yang, L., Xue, Q., & Ding, X. (2012). Development of polymorphic microsatellite loci in Momordica charantia (Cucurbitaceae) and their transferability to other cucurbit species. Scientia Horticulturae, 140, 115–118.

    Article  CAS  Google Scholar 

  18. Xu, P., Wu, X., Luo, J., Wang, B., Liu, Y., Ehlers, J. D., Wang, S., Lu, Z., & Li, G. (2011). Partial sequencing of the bottle gourd genome reveals markers useful for phylogenetic analysis and breeding. BMC Genomics, 12, 467.

    Article  CAS  Google Scholar 

  19. Chiba, N., Suwabe, K., Nunome, T., & Hirai, M. (2003). Development of microsatellite markers in melon (Cucumis melo L.) and their application to major Cucurbit crops. Breeding Science, 53, 21–27.

    Article  CAS  Google Scholar 

  20. Watcharawongpaiboon, N., & Chunwongse, J. (2008). Development and characterization of microsatellite markers from an enriched genomic library of cucumber (Cucumis sativus). Plant Breeding, 127, 74–81.

    Google Scholar 

  21. Maughan, P. J., Saghai-Maroof, M. A., & Buss, G. R. (1995). Microsatellite and amplified sequence length polymorphisms in cultivated and wild soybean. Genome, 38, 715–723.

    Article  CAS  Google Scholar 

  22. Zhang, X. Y., Li, C. W., Wang, L. F., Wang, H. M., You, G. X., et al. (2002). An estimation of the minimum number of SSR alleles needed to reveal genetic relationships in wheat varieties. I. Information from large-scale planted varieties and corner-stone breeding parents in Chinese wheat improvement and production. Theoretical and Applied Genetics, 106, 112–117.

    CAS  Google Scholar 

  23. Tang, R., Gao, G., He, L., Han, Z., Shan, S., Zhong, R., Zhou, C., Jiang, J., Li, Y., & Zhuang, W. (2007). Genetic diversity in cultivated groundnut based on SSR markers. Journal of Genetics and Genomics, 34–5, 449–459.

    Article  Google Scholar 

  24. Saghai-Maroof, M. A., Soliman, K. M., Jorgenson, R., & Allard, R. W. (1984). Ribosomal DNA spacer length polymorphism in barley: Mendelian inheritance, chromosomal locations and population dynamics. Proceedings of the National Academy of Sciences, USA, 81, 8014–8018.

    Article  CAS  Google Scholar 

  25. Mottura, M. C., Gailing, O., Verga, A. R., & Finkeldey, R. (2004). Efficiency of microsatellite enrichment in Prosopis chilensis using magnetic capture. Plant Molecular Biology Reporter, 22, 251–258.

    Article  CAS  Google Scholar 

  26. Gardner, M. G., Cooper, S. J. B., Bull, C. M., & Grant, W. N. (1999). Isolation of microsatellite loci from a social lizard, Egernia stokesii, using a modified enrichment procedure. Journal of Heredity, 90, 301–304.

    Article  CAS  Google Scholar 

  27. Wang, X. W., Trigiano, R. N., Windham, M. T., Devries, R. E., Scheffler, B. E., Rinehart, T. A., & Spires, J. M. (2007). A simple PCR procedure for discovering microsatellites from small insert libraries. Molecular Ecology Notes, 7, 558–561.

    Article  CAS  Google Scholar 

  28. Temnykh, S., DeClerck, G., Lukashova, A., Lipovich, L., Cartinhour, S., & McCouch, S. (2001). Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): Frequency, length variation, transposon associations, and genetic marker potential. Genome Research, 11, 1441–1452.

    Article  CAS  Google Scholar 

  29. Chambers, G. K., & MacAvoy, E. S. (2000). Microsatellites: Consensus and controversy. Comparative Biochemistry and Physiology (Part B), 126, 455–476.

    Article  CAS  Google Scholar 

  30. Rozen, S., & Skaletsky, H. J. (2000). Primer3 on the www for general users and for biologist programmers. In S. Krawetz & S. Misener (Eds.), Bioinformatics methods and protocols: Methods in molecular biology (pp. 365–386). Totowa, NJ: Humana.

    Google Scholar 

  31. Pavlieek, A., Pavlieek, T., & Fvlegr, J. (1999). Free tree version 0.9.1.50. Folia Biology, 45, 97–99.

    Google Scholar 

  32. Jaccard, P. (1908). Nouvelles recherche’ sur la distribution florale. Bull Soc Vaudoise Sciences Naturelles, 44, 223–270.

    Google Scholar 

  33. Yeh, F. C., & Boyle, T. (1999). POPGENE version 1.3.2: Microsoft Window-based freeware for population genetic analysis. http://www.ualberta.ca/~fyeh/index.htm.

  34. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 11–22, 4637–4680.

    Google Scholar 

  35. Wang, M.L; Barkley, N.A. and Jenkins, T.M. (2009). Microsatellite markers in plants and insects. PartI: Applications of biotechnology. Genes, Genomes and Genomics.

  36. Jurka, J., & Pethiyagoda, C. (1995). Simple repetitive DNA sequences from primates: Compilation and analysis. Journal of Molecular Evolution, 40, 120–126.

    Article  CAS  Google Scholar 

  37. Lagercrantz, U., Ellegren, H., & Andersson, L. (1993). The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acid Research, 21, 1111–1115.

    Article  CAS  Google Scholar 

  38. Danin-Poleg, Y., Reis, N., Tzuri, G., & Katzir, N. (2001). Development and characterization of microsatellite markers in Cucumis. Theoretical and Applied Genetics, 102, 61–72.

    Article  CAS  Google Scholar 

  39. Morgante, M., & Olivieri, A. M. (1993). PCR-amplified microsatellites as markers in plant genetics. The Plant Journal, 3–1, 175–182.

    Article  Google Scholar 

  40. Gupta, P. K., Balyan, H. S., Sharma, P. C., & Ramesh, B. (1996). Microsatellites in plants: A new class of molecular markers. Current Science, 70–1, 45–54.

    Google Scholar 

  41. Gong, L., Stift, G., Kofler, R., Pachner, M., & Lelley, T. (2008). Microsatellites for the genus Cucurbita and an SSR-based genetic linkage map of Cucurbita pepo L. Theoretical and Applied Genetics, 117, 37–48.

    Article  CAS  Google Scholar 

  42. Fazio, G., Staub, J. E., & Chung, S. M. (2002). Development and characterization of PCR markers in cucumber. Journal of American Society of Horticultural Science, 127–4, 545–557.

    Google Scholar 

  43. Cavagnaro, P. F., Senalki, A. D., Yang, L., Simon, P. W., Harkins, T. T., Kodira, C. D., Huang, S., & Weng, Y. (2010). Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genomics, 11, 569.

    Article  Google Scholar 

  44. Toth, G., Gaspari, Z., & Jurka, J. (2000). Microsatellites in different eukaryotic genomes: Survey and analysis. Genome Research, 10, 967–981.

    Article  CAS  Google Scholar 

  45. Parida, S. K., Kalia, S. K., Sunita, K., Dalal, V., Hemaprabha, G., Selvi, A., Pandit, A., Singh, A., Gaikwad, K., Sharma, T. R., Srivastava, P. S., Singh, N. K., & Mohapatra, T. (2009). Informative genomic microsatellite markers for efficient genotyping applications in sugarcane. Theoretical and Applied Genetics, 118, 327–338.

    Article  CAS  Google Scholar 

  46. Varshney, R. K., Harindra, A. K., Balyan, S., Roy, J. K., Prasad, M., & Gupta, P. K. (2000). Characterization of microsatellites and development of chromosome specific STMS markers in bread wheat. Plant Molecular Biology Reporter, 18, 5–16.

    Article  CAS  Google Scholar 

  47. Lioi, L., & Galasso, I. (2013). Development of genomic simple sequence repeat markers from an enriched genomic library of grass pea (Lathyrus sativus L.). Plant Breeding, 132, 649–653.

    Article  CAS  Google Scholar 

  48. Ritschel, P. S., Lins, T. C. L., Tristan, R. L., Buso, G. S. C., Buso, J. A., & Ferreira, M. E. (2004). Development of microsatellite markers from an enriched genomic library for genetic analysis of melon (Cucumis melo L.). BMC Plant Biology, 4, 9–23.

    Article  Google Scholar 

  49. Jin, L., Macaubas, C., Hallmayer, J., Kimura, A., & Mignot, E. (1996). Mutation rate varies among alleles at a microsatellite locus: Phylogenetic evidence. Proceedings of the National Academy of Sciences of USA, 93, 15285–15288.

    Article  CAS  Google Scholar 

  50. Tautz, D. (1989). Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acid Research, 17, 6463–6471.

    Article  CAS  Google Scholar 

  51. Ma, Z. Q., Roder, M., & Sorrells, M. E. (1996). Frequency and sequence characteristics of di-, tri- and tetra- nucleotide microsatellites in wheat. Genome, 39, 123–130.

    Article  CAS  Google Scholar 

  52. Cordeiro, G. M., Taylor, G. O., & Henry, R. J. (2000). Characterization of microsatellite markers from sugarcane (Saccharum spp.), a highly polyploid species. Plant Science, 155, 161–168.

    Article  CAS  Google Scholar 

  53. Weber, J. L. (1990). Informativeness of human poly (GT)n polymorphisms. Genomics, 7, 524–530.

    Article  CAS  Google Scholar 

  54. Katzir, N., Danin-Poleg, Y., Tzori, G., Karchi, Z., Lavi, U., & Cregan, P. B. (1996). Length polymorphism and homologies of microsatellites in several Cucurbitaceae. Theoretical and Applied Genetics, 93, 1282–1290.

    Article  CAS  Google Scholar 

  55. Coenye, T., & Vandamme, P. (2005). Characterization of mononucleotide repeats in sequenced prokaryotic genomes. DNA Research, 12, 221–233.

    Article  CAS  Google Scholar 

  56. Angers, B., & Bernatchez, L. (1997). Complex evolution of a salmonid microsatellite locus and its consequences in inferring allelic divergence from size information. Molecular Biology and Evolution, 14, 230–238.

    Article  CAS  Google Scholar 

  57. Grimaldi, M. C., & Crouau-Roy, B. (1997). Microsatellite homoplasy due to variable flanking sequences. Journal of Molecular Evolution, 44, 336–340.

    Article  CAS  Google Scholar 

  58. Peakall, R., Gilmore, S., Keys, W., Morgante, M., & Rafalski, A. (1998). Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: Implications for the transferability of SSRs in plants. Molecular Biology and Evolution, 15, 1275–1287.

    Article  CAS  Google Scholar 

  59. Matsuoka, Y., Mitchell, S. E., Kresovich, S., Goodman, M., & Doebley, J. (2002). Microsatellites in Zea-variability, patterns of mutations, and their use for evolutionary studies. Theoretical and Applied Genetics, 104, 436–450.

    Article  CAS  Google Scholar 

  60. Barbara, T., Palma-Silva, C., Paggi, G. M., Bered, F., Fay, M. F., & Lexer, C. (2007). Cross-species transfer of nuclear microsatellite markers: Potential and limitations. Molecular Ecology, 16, 3759–3767.

    Article  Google Scholar 

  61. Clauss, M. J., Cobban, H., & Mitchell-Olds, T. (2002). Cross-species microsatellite markers for elucidating population genetic structure in Arabidopsis and Arabis (Brassicaeae). Molecular Ecology, 11, 591–601.

    Article  CAS  Google Scholar 

  62. Zhao, X., & Kochert, G. (1993). Phylogenetic distribution and genetic mapping of a (GGC)n microsatellite from rice (Oryza sativa L.). Plant Molecular Biology, 21, 607–614.

    Article  CAS  Google Scholar 

  63. Roder, M. S., Plaschke, J., Konig, S. U., Borner, A., Sorrells, M. E., Tanksley, S. D., & Ganal, M. W. (1995). Abundance, variability and chromosomal location of microsatellites in wheat. Molecular and General Genetics, 246, 327–333.

    Article  CAS  Google Scholar 

  64. Brown, S. M., Hopkins, M. S., Mitchell, S. E., Senior, M. L., Wang, T. Y., Duncan, R. R., Gonzales-Candelas, F., & Kresovich, S. (1996). Multiple methods for the identification of polymorphic simple sequence repeats (SSRs) in sorghum [Sorghum bicolor (L.) Moench]. Theoretical and Applied Genetics, 93, 190–198.

    Article  CAS  Google Scholar 

  65. Selvi, A., Nair, N. V., Balasundaram, N., & Mohapatra, T. (2003). Evaluation of maize microsatellite markers for genetic diversity analysis and fingerprinting in sugarcane. Genome, 46, 394–403.

    Article  CAS  Google Scholar 

  66. Fu, Y. B., Chong, J., Fetch, T., & Wang, M. L. (2007). Microsatellite variation in Avena sterilis oat germplasm. Theoretical and Applied Genetics, 114, 1029–1038.

    Article  CAS  Google Scholar 

  67. Bharathi, L. K., Munshi, A. D., Behera, T. K., Joseph John, K., Bhat, K. V., & Sidhu, A. S. (2013). Morphological relationship among the Momordica species of Indian occurrence. Indian Journal of Genetics, 73, 278–286.

    Google Scholar 

  68. Bharathi, L. K., Parida, S. K., Munshi, A. D., Behera, T. K., Raman, K. V., & Mohapatra, T. (2012). Molecular diversity and phonetic relationship of Momordica spp. of Indian occurrence. Genetic Resources and Crop Evolution, 59, 937–948.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NBPGR’s institutional project on development of genomic tools for enhanced utilization of horticultural crops and a DBT project on marker development in bitter gourd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ambika B. Gaikwad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxena, S., Singh, A., Archak, S. et al. Development of Novel Simple Sequence Repeat Markers in Bitter Gourd (Momordica charantia L.) Through Enriched Genomic Libraries and Their Utilization in Analysis of Genetic Diversity and Cross-Species Transferability. Appl Biochem Biotechnol 175, 93–118 (2015). https://doi.org/10.1007/s12010-014-1249-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1249-8

Keywords

Navigation