Skip to main content

Advertisement

Log in

Production and Characterisation of Glycolipid Biosurfactant by Halomonas sp. MB-30 for Potential Application in Enhanced oil Recovery

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biosurfactant-producing Halomonas sp. MB-30 was isolated from a marine sponge Callyspongia diffusa, and its potency in crude oil recovery from sand pack column was investigated. The biosurfactant produced by the strain MB-30 reduced the surface tension to 30 mN m−1 in both glucose and hydrocarbon-supplemented minimal media. The critical micelle concentration of biosurfactant obtained from glucose-based medium was at 0.25 mg ml−1 at critical micelle dilution 1:10. The chemical structure of glycolipid biosurfactant was characterised by infrared spectroscopy and proton magnetic resonance spectroscopy. The emulsification activity of MB-30 biosurfactant was tested with different hydrocarbons, and 93.1 % emulsification activity was exhibited with crude oil followed by kerosene (86.6 %). The formed emulsion was stable for up to 1 month. To identify the effectiveness of biosurfactant for enhanced oil recovery in extreme environments, the interactive effect of pH, temperature and salinity on emulsion stability with crude oil and kerosene was evaluated. The stable emulsion was formed at and above pH 7, temperature >80 °C and NaCl concentration up to 10 % in response surface central composite orthogonal design model. The partially purified biosurfactant recovered 62 % of residual crude oil from sand pack column. Thus, the stable emulsifying biosurfactant produced by Halomonas sp. MB-30 could be used for in situ biosurfactant-mediated enhanced oil recovery process and hydrocarbon bioremediation in extreme environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Benincasa, M., Abalos, A., Oliveira, I., & Manresa, A. (2004). Antonie van Leeuwenhoek, 85(1), 1–8.

    Article  CAS  Google Scholar 

  2. Karanth, N. G. K., Deo, P. G., & Veenanadig, N. K. (1999). Current Science, 77(1), 116–126.

    CAS  Google Scholar 

  3. Desai, J. D., & Banat, I. M. (1997). Microbiology and Molecular Biology Reviews, 61(1), 47–64.

    CAS  Google Scholar 

  4. Rosenberg, E., & Ron, E. Z. (1999). Applied Microbiology and Biotechnology, 52(2), 154–162.

    Article  CAS  Google Scholar 

  5. Gandhimathi, R., Kiran, G. S., Hema, T. A., Selvin, J., Raviji, T. R., & Shanmughapriya, S. (2009). Bioprocess and Biosystems Engineering, 32(6), 825–835.

    Article  CAS  Google Scholar 

  6. Seghal Kiran, G., Anto Thomas, T., Selvin, J., Sabarathnam, B., & Lipton, A. P. (2010). Bioresource Technology, 101(7), 2389–2396.

    Article  CAS  Google Scholar 

  7. Kiran, G. S., Thomas, T. A., & Selvin, J. (2010). Colloids and Surfaces B: Biointerfaces, 78(1), 8–16.

    Article  CAS  Google Scholar 

  8. Oliveira, F. J. S., Vazquez, L., De Campos, N. P., & De Franca, F. P. (2009). Process Biochemistry, 44(4), 383–389.

    Article  CAS  Google Scholar 

  9. Nitschke, M., Costa, S. G., Haddad, R., Gonçalves, G., Lireny, A., Eberlin, M. N., & Contiero, J. (2005). Biotechnology Progress, 21(5), 1562–1566.

    Article  CAS  Google Scholar 

  10. Ma, Y., Galinski, E. A., Grant, W. D., Oren, A., & Ventosa, A. (2010). Applied and Environmental Microbiology, 76(21), 6971–6981.

    Article  CAS  Google Scholar 

  11. Tan, D., Xue, Y. S., Aibaidula, G., & Chen, G. Q. (2011). Bioresource Technology, 102(17), 8130–8136.

    Article  CAS  Google Scholar 

  12. Pepi, M., Cesàro, A., Liut, G., & Baldi, F. (2005). FEMS Microbiology Ecology, 53(1), 157–166.

    Article  CAS  Google Scholar 

  13. Gutiérrez, T., Mulloy, B., Black, K., & Green, D. H. (2007). Journal of Applied Microbiology, 103(5), 1716–1727.

    Article  Google Scholar 

  14. Zhang, Y., & Miller, R. M. (1992). Applied and Environmental Microbiology, 58(10), 3276–3282.

    CAS  Google Scholar 

  15. Shavandi, M., Mohebali, G., Haddadi, A., Shakarami, H., & Nuhi, A. (2011). Colloids and Surfaces B: Biointerfaces, 82(2), 477–482.

    Article  CAS  Google Scholar 

  16. Planckaert, M. (2005). Oil reservoirs and oil production. In B. Ollivier & M. Magot (Eds.), Petroleum microbiology (pp. 3–19). Washington DC: ASM Press.

    Chapter  Google Scholar 

  17. Li, Q., Kang, C., Wang, H., Liu, C., & Zhang, C. (2002). Biochemical Engineering Journal, 11(2), 197–199.

    Article  CAS  Google Scholar 

  18. Banat, I. M. (1995). Bioresource Technology, 51(1), 1–12.

    Article  CAS  Google Scholar 

  19. Al-Wahaibi, Y., Joshi, S., Al-Bahry, S., Elshafie, A., Al-Bemani, A., & Shibulal, B. (2014). Colloids and Surfaces B: Biointerfaces, 114, 324–333.

    Article  CAS  Google Scholar 

  20. Vinson, P. K., Talmon, Y., & Walter, A. (1989). Biophysical Journal, 56(4), 669–681.

    Article  CAS  Google Scholar 

  21. Champion, J. T., Gilkey, J. C., Lamparski, H., Retterer, J., & Miller, R. M. (1995). Journal of Colloid and Interface Science, 170(2), 569–574.

    Article  CAS  Google Scholar 

  22. Bakshi, M. S., & Sachar, S. (2006). Journal of Colloid and Interface Science, 296(1), 309–315.

    Article  CAS  Google Scholar 

  23. Mata, J., Joshi, T., Varade, D., Ghosh, G., & Bahadur, P. (2004). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 247(1), 1–7.

    Article  CAS  Google Scholar 

  24. Lovaglio, R. B., dos Santos, F. J., Jafelicci Junior, M., & Contiero, J. (2011). Colloids and Surfaces B: Biointerfaces, 85(2), 301–305.

    Article  CAS  Google Scholar 

  25. Sathya, G., Naidu, N., & Panda, T. (1998). Biochemical Engineering Journal, 2(1), 71–77.

    Article  Google Scholar 

  26. Ben, B. Z., Rehaiem, A., Fajardo, B. P., Manai, M., & Pastrana, C. L. (2011). Mikrobiologiia, 81(2), 214–219.

    Google Scholar 

  27. Selvin, J., Joseph, S., Asha, K. R. T., Manjusha, W. A., Sangeetha, V. S., Jayaseema, D. M., & Denslin Vinitha, A. J. (2004). FEMS Microbiology Ecology, 50(2), 117–122.

    Article  CAS  Google Scholar 

  28. Joshi, S., Bharucha, C., Jha, S., Yadav, S., Nerurkar, A., & Desai, A. J. (2008). Bioresource Technology, 99(1), 195–199.

    Article  CAS  Google Scholar 

  29. Carrillo, P. G., Mardaraz, C., Pitta-Alvarez, S. I., & Giulietti, A. M. (1996). World Journal of Microbiology and Biotechnology, 12(1), 82–84.

    Article  CAS  Google Scholar 

  30. Nitschke, M., & Pastore, G. M. (2004). Applied Biochemistry and Biotechnology, 112(3), 163–172.

    Article  CAS  Google Scholar 

  31. Abu‐Ruwaida, A. S., Banat, I. M., Haditirto, S., Salem, A., & Kadri, M. (1991). Acta Biotechnologica, 11(4), 315–324.

    Article  Google Scholar 

  32. Cameotra, S. S., & Makkar, R. S. (1998). Applied Microbiology and Biotechnology, 50(5), 520–529.

    Article  CAS  Google Scholar 

  33. Averhoff, B., & Muller, V. (2010). Research in Microbiology, 161(6), 506–514.

    Article  CAS  Google Scholar 

  34. Lentzen, G., & Schwarz, T. (2006). Applied Microbiology and Biotechnology, 72(4), 623–634.

    Article  CAS  Google Scholar 

  35. Litchfield, C. D. (2002). Journal of Industrial Microbiology and Biotechnology, 28, 21–22.

    Article  CAS  Google Scholar 

  36. Galinski, E. A. (1995). Advances in Microbial Physiology, 37, 273–328.

    Article  CAS  Google Scholar 

  37. Siglioccolo, A., Paiardini, A., Piscitelli, M., & Pascarella, S. (2011). BMC Structural Biology, 11(1), 50.

    Article  CAS  Google Scholar 

  38. Joshi, S., Bharucha, C., & Desai, A. J. (2008). Bioresource Technology, 99(11), 4603–4608.

    Article  CAS  Google Scholar 

  39. Wu, J. Y., Yeh, K. L., Lu, W. B., Lin, C. L., & Chang, J. S. (2008). Bioresource Technology, 99(5), 1157–1164.

    Article  CAS  Google Scholar 

  40. Olivera, N. L., Commendatore, M. G., Delgado, O., & Esteves, J. L. (2003). Journal of Industrial Microbiology and Biotechnology, 30(9), 542–548.

    Article  CAS  Google Scholar 

  41. Wilson, S. C., & Jones, K. C. (1993). Environmental Pollution, 81(3), 229–249.

    Article  CAS  Google Scholar 

  42. Margesin, R., & Schinner, F. (2001). Extremophiles, 5(2), 73–83.

    Article  CAS  Google Scholar 

  43. Banat, I. M., Makkar, R. S., & Cameotra, S. S. (2000). Applied Microbiology and Biotechnology, 53(5), 495–508.

    Article  CAS  Google Scholar 

  44. Khopade, A., Ren, B., Liu, X. Y., Mahadik, K., Zhang, L., & Kokare, C. (2012). Journal of Colloid and Interface Science, 367(1), 311–318.

    Article  CAS  Google Scholar 

  45. Manivasagan, P., Sivasankar, P., Venkatesan, J., Sivakumar, K., & Kim, S. K. (2014). Bioprocess and Biosystems Engineering, 37, 783–797.

    Article  CAS  Google Scholar 

  46. Passeri, A., Schmidt, M., Haffner, T., Wray, V., Lang, S., & Wagner, F. (1992). Applied Microbiology and Biotechnology, 37(3), 281–286.

    Article  CAS  Google Scholar 

  47. Thanomsub, B., Watcharachaipong, T., Chotelersak, K., Arunrattiyakorn, P., Nitoda, T., & Kanzaki, H. (2004). Journal of Applied Microbiology, 96(3), 588–592.

    Article  CAS  Google Scholar 

  48. Park, O. J., Lee, Y. E., Cho, J. H., Shin, H. J., Yoon, B. D., & Yang, J. W. (1998). Biotechnology and Bioprocess Engineering, 3(2), 61–66.

    Article  Google Scholar 

  49. Jain, R. M., Mody, K., Joshi, N., Mishra, A., & Jha, B. (2013). International Journal of Biological Macromolecules, 62, 52–58.

    Article  CAS  Google Scholar 

  50. Ozdemir, G., Peker, S., & Helvaci, S. S. (2004). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 234(1), 135–143.

    Article  CAS  Google Scholar 

  51. Bordoloi, N. K., & Konwar, B. K. (2008). Colloids and Surfaces B: Biointerfaces, 63(1), 73–82.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

DA would like to acknowledge the Department of Science and Technology, New Delhi, Government of India for INSPIRE fellowship. JS is thankful to DBT for research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Selvin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhasayan, A., Kiran, G.S. & Selvin, J. Production and Characterisation of Glycolipid Biosurfactant by Halomonas sp. MB-30 for Potential Application in Enhanced oil Recovery. Appl Biochem Biotechnol 174, 2571–2584 (2014). https://doi.org/10.1007/s12010-014-1209-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1209-3

Keyword

Navigation