Skip to main content
Log in

Anti-Bactericidal Properties of Stingray Dasyatis pastinaca Groups V, IIA, and IB Phospholipases A2: A Comparative Study

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Group IIA secreted phospholipase A2 (group IIA sPLA2) is known to display potent Gram-positive bactericidal activity in vitro and in vivo. We have analyzed the bactericidal activity of the full set of native stingray and dromedary groups V, IIA, and IB sPLA2s on several Gram-positive and Gram-negative strains. The rank order potency among both marine and mammal sPLA2s against Gram-positive bacteria is group IIA > V > IB, whereas Gram-negative bacteria exhibited a much higher resistance. There is a synergic action of the sPLA2 with lysozyme when added to the bacteria culture prior to sPLA2.The bactericidal efficiency of groups V and IIA sPLA2s was shown to be dependent upon the presence of calcium ions and to a less extent Mg2+ ions and then a correlation could be made to its hydrolytic activity of membrane phospholipids. Importantly, we showed that stingray and dromedary groups V, IIA, and IB sPLA2s present no cytotoxicity after their incubation with MDA-MB-231cells. stingray groups V and IIA sPLA2s, like mammal ones, may be considered as future therapeutic agents against bacterial infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DrPLA2-IB:

Dromedary group IB phospholipase A2

DrPLA2-IIA:

Dromedary group IIA phospholipase A2

DrPLA2-V:

Dromedary group V phospholipase A2

sPLA2 :

Secreted phospholipase A2

SPLA2 :

Stingray phospholipase A2

SPLA2-IB:

Stingray group IB phospholipase A2

SPLA2-IIA:

Stingray group IIA phospholipase A2

SPLA2-V:

Stingray group V phospholipase A2

References

  1. Murakami, M., Taketomi, Y., Miki, Y., Sato, H., Hirabayashi, T., & Yamamoto, K. (2011). Recent progress in phospholipase A(2) research: From cells to animals to humans. Progress in Lipid Research, 50, 152–192.

    Article  CAS  Google Scholar 

  2. Nevalainen, T. J., Cardoso, J. C., & Riikonen, P. T. (2012). Conserved domains and evolution of secreted phospholipases A(2). FEBS Journal, 279, 636–649.

    Article  CAS  Google Scholar 

  3. Dennis, E. A. (1997). The growing phospholipase A2 superfamily of signal transduction enzymes. Trends in Biochemical Sciences, 22, 1–2.

    Article  CAS  Google Scholar 

  4. Mukherjee, A. B., Miele, L., & Pattabiraman, N. (1994). Phospholipase A2 enzymes: Regulation and physiological role. Biochemical Pharmacology, 48, 1–10.

    Article  CAS  Google Scholar 

  5. Buckland, A. G., & Wilton, D. C. (2000). The antibacterial properties of secreted phospholipases A(2). Biochimica et Biophysica Acta, 1488, 71–82.

    Article  CAS  Google Scholar 

  6. Qu, X. D., & Lehrer, R. I. (1998). Secretory phospholipase A2 is the principal bactericide for staphylococci and other Gram-positive bacteria in human tears. Infection and Immunity, 66, 2791–2797.

    CAS  Google Scholar 

  7. Nevalainen, T. J., Haapamaki, M. M., & Gronroos, J. M. (2000). Roles of secretory phospholipases A2 in inflammatory diseases and trauma. Biochimica et Biophysica Acta, 1488, 83–90.

    Article  CAS  Google Scholar 

  8. Beers, S. A., Buckland, A. G., Koduri, R. S., Cho, W., Gelb, M. H., & Wilton, D. C. (2002). The antibacterial properties of secreted phospholipases A2: A major physiological role for the group IIA enzyme that depends on the very high pI of the enzyme to allow penetration of the bacterial cell wall. Journal of Biological Chemistry, 277, 1788–1793.

    Article  CAS  Google Scholar 

  9. Koduri, R. S., Grönroos, J. O., Laine, V. J., Le Calvez, C., Lambeau, G., Nevalainen, T. J., & Gelb, M. H. (2002). Bactericidal properties of human and murine groups I, II, V, X, and XII secreted phospholipases A(2). Journal of Biological Chemistry, 277, 5849–5857.

    Article  CAS  Google Scholar 

  10. Shahidi, F., & Kamil, J. (2001). Enzymes from fish and aquatic invertebrates and their application in the food industry. Trends in Food Science & Technology, 12, 435–464.

    Article  Google Scholar 

  11. Kurtovic, I., Marshall, N. S., Zhao, X., & Simpson, B. K. (2009). Lipases from mammals and fishes. Reviews in Fisheries Science, 17, 18–40.

    Article  CAS  Google Scholar 

  12. Smichi, N., Fendri, A., Zarai, Z., Bouchaala, E., Cherif, S., Gargouri, Y., & Miled, N. (2012). Lipolytic activity levels and colipase presence in digestive glands of some marine animals. Fish Physiology and Biochemistry, 38, 1449–1458.

    Article  CAS  Google Scholar 

  13. Bacha, A. B., Karray, A., Bouchaala, E., Gargouri, Y., & Ali, Y. B. (2011). Purification and biochemical characterization of pancreatic phospholipase A2 from the common stingray Dasyatis pastinaca. Lipids in Health and Disease, 10, 32–39.

    Article  Google Scholar 

  14. Ben Bacha, A., Abid, I., & Horchani, H. (2012). Antibacterial properties of intestinal phospholipase A2 from the common stingray Dasyatis pastinaca. Applied Biochemistry and Biotechnology, 168, 1277–1287.

    Article  CAS  Google Scholar 

  15. Ben Bacha, A., Daihan, S. K., Moubayed, N. M., & Mejdoub, H. (2013). Purification and characterization of a new organic-solvent-tolerant SPLA2-IIA from common stingray intestine. Indian Journal of Biochemistry and Biophysics, 50, 186–195.

    CAS  Google Scholar 

  16. Ben Bacha, A., Abid, I., Horchani, H., & Mejdoub, H. (2013). Enzymatic properties of stingray Dasyatis pastinaca group V, IIA and IB phospholipases A2: A comparative study. International Journal of Biological Macromolecules, 62, 537–542.

    Article  CAS  Google Scholar 

  17. Bacha, A. B., Gargouri, Y., Bezzine, S., & Mejdoub, H. (2006). Purification and biochemical characterization of phospholipase A2 from dromedary pancreas. Biochimica et Biophysica Acta, 1760, 1202–1209.

    Article  Google Scholar 

  18. Ben Bacha, A., Al-Daihan, S. K., & Mejdoub, H. (2013). Purification, characterization and antibacterial activities of phospholipase A2 from the dromedary intestine. International Journal of Biological Macromolecules, 57, 156–164.

    Article  CAS  Google Scholar 

  19. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  20. Karray, A., Ali, Y. B., Gargouri, Y., & Bezzine, S. (2011). Antibacterial properties of chicken intestinal phospholipase A2. Lipids in Health and Disease, 10, 4–13.

    Article  CAS  Google Scholar 

  21. Zarai, Z., Gharsallah, H., Hammami, A., Mejdoub, H., Bezzine, S., & Gargouri, Y. T. (2012). Antibacterial, anti-chlamydial, and cytotoxic activities of a marine snail (Hexaplex trunculus) phospholipase A2: An in vitro study. Applied Biochemistry and Biotechnology, 168(4), 877–886.

    Article  CAS  Google Scholar 

  22. Bera, A., Herbert, S., Jakob, A., Vollmer, W., & Götz, F. (2005). Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Molecular Microbiology, 55, 778–787.

    Article  CAS  Google Scholar 

  23. Ben Bacha, A., & Abid, I. (2013). Secretory phospholipase a(2) in dromedary tears: A host defense against staphylococci and other Gram-positive Bacteria. Applied Biochemistry and Biotechnology, 169, 1858–1869.

    Article  CAS  Google Scholar 

  24. Degousee, N., Ghomashchi, F., Stefanski, E., Singer, A., Smart, B. P., Borregaard, N., Reithmeier, R., Lindsay, T. F., Lichtenberger, C., Reinisch, W., Lambeau, G., Arm, J., Tischfield, J., Gelb, M. H., & Rubin, B. B. (2002). Groups IV, V, and X phospholipases A2s in human neutrophils: Role in eicosanoid production and Gram-negative bacterial phospholipid hydrolysis. Journal of Biological Chemistry, 277, 5061–5073.

    Article  CAS  Google Scholar 

  25. Weiss, J., Inada, M., Elsbach, P., & Crowl, R. M. (1994). Structural determinants of the action against Escherichia coli of a human inflammatory fluid phospholipase A2 in concert with polymorphonuclear leukocytes. Journal of Biological Chemistry, 269, 26331–26337.

    CAS  Google Scholar 

  26. Weiss, J., Wright, G., Bekkers, A. C., van den Bergh, C. J., & Verheij, H. M. (1991). Conversion of pig pancreas phospholipase A2 by protein engineering into enzyme active against Escherichia coli treated with the bactericidal/permeability-increasing protein. Journal of Biological Chemistry, 266, 4162–4167.

    CAS  Google Scholar 

  27. Zhao, H., & Kinnunen, P. K. (2003). Modulation of the activity of secretory phospholipase A2 by antimicrobial peptides. Antimicrobial Agents and Chemotherapy, 47, 965–971.

    Article  CAS  Google Scholar 

  28. Padgett, G. A., & Hirsch, J. G. (1967). Lysozyme: Its absence in tears and leukocytes of cattle. Australian Journal of Experimental Biology & Medical Science, 45, 569–570.

    Article  CAS  Google Scholar 

  29. Nakashima, S., Ikeno, Y., Yokoyama, T., Kuwana, M., Bolchi, A., Ottonellom, S., Kitamoto, K., & Arioka, M. (2003). Secretory phospholipases A2 induce neurite outgrowth in PC12 cells. Biochemical Journal, 376, 655–666.

    Article  CAS  Google Scholar 

  30. Osipov, A. V., Filkin, S. Y., Makarova, Y. V., Tsetlinand, V. I., & Utkin, Y. N. (2010). A new type of thrombin inhibitor, noncytotoxic phospholipase A2, from the Najahaje cobra venom. Toxicon, 55, 186–194.

    Article  CAS  Google Scholar 

  31. Nyman, K. M., Häggblom, J. O., & Nevalainen, T. J. (1997). Toxic effects of phospholipase A2 in vitro. In W. Uhl, T. J. Nevalainen, & M. W. Büchler (Eds.), Phospholipase A 2 basic and clinical aspects in inflammatory diseases, Progress in surgery (pp. 176–181). Basel: S Karger Publisher.

    Google Scholar 

  32. Vadas, P., & Pruzanski, W. (1997). Toxic effects of phospholipase A2 in vitro. In W. Uhl, T. J. Nevalainen, & M. W. Büchler (Eds.), Phospholipase A 2 basic and clinical aspects in inflammatory diseases, Progress in surgery (pp. 176–181). Basel: S Karger Publisher.

    Google Scholar 

  33. Grönroos, J. O., Laine, V. J., Janssen, M. J., Egmond, M. R., & Nevalainen, T. J. (2001). Bactericidal properties of group IIA and group V phospholipases A2. Journal of Immunology, 166, 4029–4034.

    Article  Google Scholar 

  34. Sapirstein, A., Spech, R. A., Witzgall, R., & Bonventre, J. V. (1996). Cytosolic phospholipase A2 (PLA2), but not secretory PLA2, potentiates hydrogen peroxide cytotoxicity in kidney epithelial cells. Journal of Biological Chemistry, 271, 21505–21513.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research project was supported by a grant from the “Research Center of the Female Scientific and Medical Colleges,” Deanship of Scientific Research, King Saud University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abir Ben Bacha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bacha, A.B. Anti-Bactericidal Properties of Stingray Dasyatis pastinaca Groups V, IIA, and IB Phospholipases A2: A Comparative Study. Appl Biochem Biotechnol 174, 1520–1534 (2014). https://doi.org/10.1007/s12010-014-1069-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1069-x

Keywords

Navigation