Skip to main content
Log in

Biosynthesis of Silver Nanoparticles by Bacillus stratosphericus Spores and the Role of Dipicolinic Acid in This Process

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Seeking for simple, rapid, and environmental-friendly routes to produce metal nanoparticles is quite attractive for various biotechnological applications. Biological synthesis method of silver nanoparticles has been found very promising due to their non-toxicity and simplicity. Here, the spores of Bacillus stratosphericus isolated from soil enriched with 30 % H2O2 were used for the production of silver nanoparticles. Furthermore, the possible mechanism of silver nanoparticle synthesis by the spores was elucidated for the first time. In this regard, dipicolinic acid (DPA) was shown to play a critical role as a nanoparticle-producing agent. UV–Vis absorption spectroscopy, X-ray diffraction technique, energy-dispersive spectroscopy, and transmission electron microscopy were used to characterize the nanoparticles. Unlike vegetative cells of B. stratosphericus, the spores and the purified DPA were capable of producing nanoparticles from silver nitrate (AgNO3). These biogenic nanoparticles, which were highly toxic against different pathogenic bacteria, showed mixed structures including spherical, triangular, cubic, and hexagonal with the approximate size between 2 and 20 nm in diameter. Our results illustrated the role of dipicolinic acid as a main factor for the synthesis of nanoparticles by the bacterial spores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Klaus-Joerger, T., Joerger, R., Olsson, E., & Granqvist, C. (2001). Trends in Biotechnology, 19(1), 15–20.

    Article  CAS  Google Scholar 

  2. Li, X., Xu, H., Chen, Z. S., & Chen, G. (2011). Journal of Nanomaterials. doi:10.1155/2011/270974.

    Google Scholar 

  3. Huang, H., & Yang, X. (2004). Carbohydrate Research, 339, 2627–2631.

    Article  CAS  Google Scholar 

  4. Liu, S., Zhang, Z., & Han, M. (2005). Analytical Chemistry, 77(8), 2595–2600.

    Article  CAS  Google Scholar 

  5. Rai, M., Yadav, A., & Gade, A. (2009). Biotechnology Advances, 27(1), 76–83.

    Article  CAS  Google Scholar 

  6. Singh, A. K., Pandey, A., Rai, R., Tewari, M., Pandey, H. P., & Shukla, H. S. (2008). Digest Journal of Nanomaterials and Biostructures, 3(3), 135–140.

    Google Scholar 

  7. Vaidyanathan, R., Kalishwaralal, K., Gopalram, S., & Gurunathan, S. (2009). Biotechnology Advances, 27(6), 924–937.

    Article  CAS  Google Scholar 

  8. Haefeli, C., Franklin, C., & Hardy, K. (1984). Journal of Bacteriology, 158, 389–392.

    CAS  Google Scholar 

  9. Kalimuthu, K., Babu, R. S., Venkataraman, D., Bilal, M., & Gurunathan, S. (2008). Colloids and Surfaces B: Biointerfaces, 65(1), 150–153.

    Article  CAS  Google Scholar 

  10. Lengke, F. M., Fleet, E. M., & Southam, G. (2007). Langmuir Journal, 23, 2694–2699.

    Article  CAS  Google Scholar 

  11. Natarajan, K., Selvaraj, S., & Murty, V. R. (2010). Digest Journal of Nanomaterials and Biostructures, 5, 135–140.

    Google Scholar 

  12. Saifuddin, N., Wong, C. W., & Nur Yasumira, A. A. (2009). European Journal of Chemistry, 6(1), 61–70.

    CAS  Google Scholar 

  13. Hosseini-Abari, A., Emtiazi, G., & Ghasemi, S. M. (2013). World Journal of Microbiology and Biotechnology, 29, 2359–2364.

    Article  CAS  Google Scholar 

  14. Jain, D., Kachhaeaha, S., Jain, R., Sirvastava, G., & Kothari, S. L. (2010). Indian Journal of Experimental Biology, 48, 1152–1156.

    CAS  Google Scholar 

  15. Kilin, D. S., Prezhdo, O. V., & Xia, Y. (2008). Chemical Physics Letters, 458, 113–116.

    Article  CAS  Google Scholar 

  16. Zayats, M., Baron, R., Popov, I., & Willner, I. (2005). Nano Letters, 5, 21–25.

    Article  CAS  Google Scholar 

  17. Bickley, J., Short, J. K., McDowell, D. G., & Parkes, H. C. (1996). Letters in Applied Microbiology, 22(2), 153–158.

    Article  CAS  Google Scholar 

  18. Nicholson, W.L. & Setlow, P. (1990) Molecular biological methods for Bacillus: Sporulation, germination, and out-growth. In Harwood, C.R., Cutting S.M. (Eds.), pp. 391–450.

  19. Wiley, B. J., Im, S. H., Li, Z. Y., McLellan, J., Siekkinen, A., & Xia, Y. (2006). Journal of Physical Chemistry B, 17;110(32), 15666–15675.

    Article  Google Scholar 

  20. Ruttimann, C., Schweber, E., Salas, L., Cullen, D., & Vicuna, R. (1992). Biotechnology and Applied Biochemistry, 16, 64–76.

    CAS  Google Scholar 

  21. Harley, S. (1993). American Biology Teacher, 55, 161–164.

    Article  Google Scholar 

  22. Lewis, J. C. (1967). Analytical Biochemistry, 19(2), 327–337.

    Article  CAS  Google Scholar 

  23. Grecz, N., & Tang, T. (1970). Journal of General Microbiology, 63, 303–310.

    Article  CAS  Google Scholar 

  24. Setlow, B., Cowan, A. E., & Setlow, P. (2003). Journal of Applied Microbiology, 95, 637–648.

    Article  CAS  Google Scholar 

  25. Shivaji, S., Chaturvedi, P., Suresh, K., Reddy, G.S.N., Dutt, C.B.S., Wainwright, M., Narlikar, J.V., & Bhargava, P.M. (2006). International Journal of Systematic and Evolutionary Microbiology, (7), 1465–1473.

  26. Zhang, J., Zhang, E., Scott, K., & Burgess, J. G. (2012). Environmental Science and Technology, 46(5), 2984–2992.

    Article  CAS  Google Scholar 

  27. Con, T. H., & Loan, D. K. (2011). Environment Asia, 4(1), 62–66.

    Google Scholar 

  28. Patil, H. B., Borse, S. V., Patil, D. R., Patil, U. K., & Patil, H. M. (2011). Archives of Physics Research, 2(3), 153–158.

    CAS  Google Scholar 

  29. Meng, Y. T., Zheng, Y. M., Zhang, L. M., & He, J. Z. (2009). Environmental Pollution, 157, 2577–2583.

    Article  CAS  Google Scholar 

  30. Gholami-Shabani, M., Akbarzadeh, A., Norouzian, D., Amini, A., Gholami-Shabani, Z., Imani, A., Chiani, M., Riazi, G., Shams-Ghahfarokhi, M., & Razzaghi-Abyaneh, M. (2014). Applied Biochemistry and Biotechnology, 172(8), 4084–4098. doi:10.1007/s12010-014-0809-2.

    Article  CAS  Google Scholar 

  31. Sanghi, R., & Verma, P. (2009). Bioresource Technology, 100(1), 501–504.

    Article  CAS  Google Scholar 

  32. Vaidyanathan, R., Gopalram, S., Kalishwaralal, K., Deepak, V., Kumar, S. R., & Gurunathan, P. S. (2010). Colloids and Surfaces B: Biointerfaces, 75, 335–341.

    Article  CAS  Google Scholar 

  33. Xiao, Y., Pavlov, V., Shlyahovsky, B., & Willner, I. (2005). Chemistry - A European Journal, 11(9), 2698–2704.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the University of Isfahan for the financial support given to the PhD student for a training period in the Department of Biology and Microbiology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Giti Emtiazi or June-Hyung Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini-Abari, A., Emtiazi, G., Lee, SH. et al. Biosynthesis of Silver Nanoparticles by Bacillus stratosphericus Spores and the Role of Dipicolinic Acid in This Process. Appl Biochem Biotechnol 174, 270–282 (2014). https://doi.org/10.1007/s12010-014-1055-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1055-3

Keywords

Navigation