Skip to main content

Advertisement

Log in

Effect of Double-Step Steam Explosion Pretreatment in Bioethanol Production from Softwood

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The study investigated the production of bioethanol from softwood, in particular pine wood chip. The steam explosion pretreatment was largely investigated, evaluating also the potential use of a double-step process to increase ethanol production through the use of both solid and liquid fraction after the pretreatment. The pretreatment tests were carried out at different conditions, determining the composition of solid and liquid fraction and steam explosion efficiency. The enzymatic hydrolysis was carried out with Ctec2 enzyme while the fermentation was carried out using Saccharomyces Cerevisiae yeast “red ethanol”. It was found that the best experimental result was obtained for a single-step pretreated sample (10.6 g of ethanol/100 g of initial biomass dry basis) for a 4.53 severity. The best double-step overall performance was equal to 8.89 g ethanol/100 g of initial biomass dry basis for a 4.27 severity. The enzymatic hydrolysis strongly depended on the severity of the pretreatment while the fermentation efficiency was mainly influenced by the concentration of the inhibitors. The ethanol enhancing potential of a double-step steam explosion could slightly increase the ethanol production compared to single-step potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

SE:

Steam explosion

5-HMF:

5-hydroxymethil furfural

NREL:

National Renewable Energy Laboratory

DM:

Dry matter

HPLC:

High Performance Liquid Chromatography

AIR:

Acid-insoluble residue

AIL:

Acid-insoluble lignin

TGA:

Thermal-gravimetric analysis

WIS:

Water insoluble substrate

HY:

Hydrolysis yield

XMG:

Xylose mannose and galactose

References

  1. Sims, R. E. H., Mabee, W., Saddler, J. N., & Taylor, M. (2010). Bioresource Technology, 101, 1570–1580.

    Article  CAS  Google Scholar 

  2. Limayem, A., & Ricke, S. C. (2012). Progress in Energy and Combustion Science, 38, 449–467.

    Article  CAS  Google Scholar 

  3. Balata, M. (2011). Energy Conversion and Management, 52, 858–875.

    Article  Google Scholar 

  4. Gnansounou, E., & Dauriat, A. (2010). Bioresource Technology, 101, 4980–4991.

    Article  CAS  Google Scholar 

  5. Lin, Y., & Tanaka, S. (2006). Applied Microbiology and Biotechnology, 69, 627–642.

    Article  CAS  Google Scholar 

  6. Hamelick, C. N., Van Hooijdonk, G., & Faaji, A. P. C. (2005). Biomass and Bioenergy, 28, 384–410.

    Article  Google Scholar 

  7. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Bioresource Technology, 96, 673–686.

    Article  CAS  Google Scholar 

  8. Chandra, R. P., Bura, R., Mabee, W. E., Berlin, A., Pan, X., & Saddler, J. N. (2007). Advances in biochemical engineering and biotechnology, 108, 67–93.

    CAS  Google Scholar 

  9. Lopez-Abelairas, M., Lu-Chau, T. A., & Lema, J. M. (2013). Applied Biochemistry and Biotechnology, 169, 1147–1159.

    Article  CAS  Google Scholar 

  10. Bak, J. S., Ko, J. K., Choi, I., Park, Y., Seo, J., & Kim, K. H. (2009). Biotechnology & Bioengineering, 104, 471–482.

    Article  CAS  Google Scholar 

  11. Hendriks, A. T. W. M., & Zeeman, G. (2009). Bioresource Technology, 100, 10–18.

    Article  CAS  Google Scholar 

  12. Kumar, L., Chandra, R., & Saddler, J. (2011). Biotechnology and Bioengineering, 108, 2300–2310.

    Article  CAS  Google Scholar 

  13. Overend, R. P., & Chornet, E. (1987). Philosophical Transactions of the Royal Society of London. Series A, 321, 523–536.

    Article  CAS  Google Scholar 

  14. Alvira, P., Tomas-Pejo, E., Ballesteros, M., & Negro, M. J. (2010). Bioresource Technology, 101, 4851–4861.

    Article  CAS  Google Scholar 

  15. Palmquist, E., & Barbel, H. H. (2000). Bioresource Technology, 74, 25–33.

    Article  Google Scholar 

  16. Huang, H., Guo, X., Li, D., Liu, M., Wu, J. A., & Ren, H. (2011). Bioresource Technology, 102, 7486–7493.

    Article  CAS  Google Scholar 

  17. Kumar, L., Arantes, V., Chandra, R., & Saddler, J. (2012). Bioresource Technology, 103, 201–208.

    Article  CAS  Google Scholar 

  18. Nakagame, S., Chandra, R. P., Kadla, J. F., & Saddler, J. N. (2011). Bioresource Technology, 102, 4507–4517.

    Article  CAS  Google Scholar 

  19. Rahikainen, J. L., Martin-Sampredo, R., Heikkinen, H., Rovio, S., Marjamaa, K., Tamminen, T., Rojas, O. J., & Kruus, K. (2013). Bioresource Technology, 133, 270–278.

    Article  CAS  Google Scholar 

  20. Nakagame, S., Chandra, R. P., & Saddler, J. N. (2009). Biotechnology and Bioengineering, 105, 871–879.

    Google Scholar 

  21. Larsson, S., Palmqvist, E., Hahn-Hagerdal, B., Tengborg, C., Stenberg, K., Zacchi, G., & Nilvebrant, N. O. (1999). Enzyme and Microbial Technology, 24, 151–159.

    Article  CAS  Google Scholar 

  22. Taherzadeh, M. J., Gustafsson, L., Niklasson, C., & Liden, G. (2000). Journ. Bioscience and Bioengineering, 90, 374–380.

    Article  CAS  Google Scholar 

  23. Kumar, L., Chandra, R., Chung, P. A., & Saddler, J. (2010). Bioresource Technology, 101, 7827–7833.

    Article  CAS  Google Scholar 

  24. Fang, H., Deng, J., & Zhang, T. (2011). Applied Biochemistry And Biotechnology, 163, 547–557.

    Article  CAS  Google Scholar 

  25. Kim, S. K., Park, D. H., Song, S. H., Wee, Y. J., & Jeong, G. T. (2013). Bioprocess and Biosystems Engineering, 36, 659–666.

    Article  CAS  Google Scholar 

  26. Yu, Q., Zhuang, X., Yuan, Z., Wang, Q., Qi, W., Wang, W., Zhang, Y., Xu, J., & Xu, H. (2010). Bioresource Technology, 101, 4896–4899.

    Google Scholar 

  27. Soderstrom, J., Pilcher, L., Galbe, M., & Zacchi, G. (2003). Biomass Bioenergy, 24, 475–486.

    Article  CAS  Google Scholar 

  28. De Bari, I., Liuzzi, F., Villone, A., & Braccio, G. (2013). Applied Energy, 102, 179–189.

    Article  Google Scholar 

  29. Cotana, F., Cavalaglio, G., Gelosia, M., Nicolini, A., Coccia, V. & Petrozzi, A. (2014). Energy Procedia, 45, 42–51.

  30. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D and Crocker D. (2008) Technical report\( \hbox{---} \)National Renewable Energy Laboratory.

  31. Hodge, D. B., Karmi, M. N., Schell, D. J., & McMillan, J. D. (2009). Applied Biochemistry and Biotechnology, 152, 88–107.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Novozymes and Fermentis for providing Cellic™Ctec2 and Red Ethanol®; furthermore, thanks to all the biofuel and biochemical laboratory team for the efforts and the helpful work done.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Cavalaglio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cotana, F., Cavalaglio, G., Gelosia, M. et al. Effect of Double-Step Steam Explosion Pretreatment in Bioethanol Production from Softwood. Appl Biochem Biotechnol 174, 156–167 (2014). https://doi.org/10.1007/s12010-014-1046-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1046-4

Keywords

Navigation