Skip to main content
Log in

Dilute Acid Pretreatment of Black Spruce Using Continuous Steam Explosion System

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The pretreatment of lignocellulosic materials prior to the enzymatic hydrolysis is essential to the sugar yield and bioethanol production. Dilute acid hydrolysis of black spruce softwood chip was performed in a continuous high temperature reactor followed with steam explosion and mechanical refining. The acid-soaked wood chips were pretreated under different feeding rates (60 and 92 kg/h), cooking screw rotation speeds (7.2 and 14.4 rpm), and steam pressures (12 and 15 bar). The enzymatic hydrolysis was carried out on the acid-insoluble fraction of pretreated material. At lower feeding rate, the pretreatment at low steam pressure and short retention time favored the recovery of hemicellulose. The pretreatment at high steam pressure and longer retention time recovered less hemicellulose but improved the enzymatic accessibility. As a result, the overall sugar yields became similar no matter what levels of the retention time or steam pressure. Comparing with lower feeding rate, higher feeding rate resulted in consistently higher glucose yield in both liquid fraction after pretreatment and that released after enzymatic hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mabee, W. E., & Saddler, J. N. (2009). Bioresource Technology. doi:10.1016/j.biortech.2009.10.098.

    Google Scholar 

  2. Schell, D. J., Torget, R., Power, A., Walter, P. J., Grohmann, K., & Hinman, N. D. (1991). Applied Biochemistry and Biotechnology, 28–29, 87–97.

    Article  Google Scholar 

  3. Clark, T. A., & Mackie, K. L. (1987). Journal of Wood Chemistry and Technology, 7, 373–403.

    Article  CAS  Google Scholar 

  4. Clark, T. A., Mackie, K. L., Dare, P. H., & McDonald, A. G. (1989). Journal of Wood Chemistry and Technology, 9, 135–166.

    Article  CAS  Google Scholar 

  5. Overend, R. P., & Chornet, E. (1987). Philosophical Transactions of the Royal Society of London, A321, 523–536.

    Google Scholar 

  6. Zimbardi, F., Viggiano, D., Nanna, F., Demichele, M., Cuna, D., & Cardinale, G. (1999). Applied Biochemistry and Biotechnology, 77–79, 117–125.

    Article  Google Scholar 

  7. Cullis, I. F., Saddle, J. H., & Mansfield, S. D. (2004). Biotechnology and Bioengineering, 85, 413–421.

    Article  CAS  Google Scholar 

  8. Kim, K. H., Tucker, M. P., & Nguyen, Q. A. (2002). Biotechnology Progress, 18, 489–494.

    Article  CAS  Google Scholar 

  9. Boussaid, A. L., Esteghlalian, A. R., Gregg, D. J., Lee, K. H., & Saddler, J. N. (2000). Applied Biochemistry and Biotechnology, 84–6, 693–705.

    Article  Google Scholar 

  10. Mackie, K. L., Brownell, H. H., West, K. L., & Saddler, J. N. (1985). Journal of Wood Chemistry and Technology, 5, 405–425.

    Article  CAS  Google Scholar 

  11. Varge, E., Réczey, K., & Zacchi, G. (2004). Applied Biochemistry and Biotechnology, 113–116, 509–523.

    Article  Google Scholar 

  12. David, A., Sievers, D. A., Elander, R. T., Kuhn, E. M., Nagle, N. J., Tucker, M. P. et al. (2009) NREL Report No. PO-510-45809.

  13. Jeferson, T., & Melo, A. (2002). Polymer Engineering and Science, 42, 170–181.

    Article  Google Scholar 

  14. Hu, G. H., & And Kadri, I. (1999). Polymer Engineering and Science, 39, 930–939.

    Article  CAS  Google Scholar 

  15. Carneiro, O. S., Covas, J. A., Ferreira, J. A., & Cerqueira, M. F. (2004). Polymer Testing, 23, 925–937.

    Article  CAS  Google Scholar 

  16. Zhang, X. M., Xu, Z. B., Feng, L. F., et al. (2002). Polymer Engineering and Science, 46, 510–519.

    Google Scholar 

  17. Zheng, Y., Pan, A., Zhang, R., & Labavitch, J. M. (2007). Applied Biochemistry and Biotechnology, 136–140, 423–436.

    Article  Google Scholar 

  18. Galbe, M., & Zacchi, G. (2002). Applied Microbiology and Biotechnology, 59, 618–628.

    Article  CAS  Google Scholar 

  19. Wu, M., Chang, K., Gregg, D. J., Boussaid, A., Beatson, R. P., & Saddler, J. N. (1999). Applied Biochemistry and Biotechnology, 77–79, 47–54.

    Article  Google Scholar 

  20. Tengborg, C., Stenberg, K., Galbe, M., Zacchi, G., Larsson, S., Palmqvist, E., et al. (1998). Appl Biochem. Biotech, 70–72, 3–15.

    Article  Google Scholar 

  21. Nguyen, Q. A., Tucker, M. P., Keller, F. A., & Eddy, F. P. (2000). Applied Biochemistry and Biotechnology, 84–86, 561–576.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the ABIP program under the network of CBioN and FQRNT. The authors would like to thank Sylvie Renaud of Pulp and Paper Division, FPInnovations for her assistance with the sugar component analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, H., Deng, J. & Zhang, T. Dilute Acid Pretreatment of Black Spruce Using Continuous Steam Explosion System. Appl Biochem Biotechnol 163, 547–557 (2011). https://doi.org/10.1007/s12010-010-9061-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9061-6

Keywords

Navigation