Skip to main content
Log in

Ascorbic Acid and Salicylic Acid Mitigate NaCl Stress in Caralluma tuberculata Calli

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Plants exposed to salt stress undergo biochemical and morphological changes even at cellular level. Such changes also include activation of antioxidant enzymes to scavenge reactive oxygen species, while morphological changes are determined as deformation of membranes and organelles. Present investigation substantiates this phenomenon for Caralluma tuberculata calli when exposed to NaCl stress at different concentrations. Elevated levels of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) in NaCl-stressed calli dwindled upon application of non-enzymatic antioxidants; ascorbic acid (AA) and salicylic acid (SA). Many fold increased enzymes concentrations trimmed down even below as present in the control calli. Electron microscopic images accentuated several cellular changes upon NaCl stress such as plasmolysed plasma membrane, disruption of nuclear membrane, increased numbers of nucleoli, alteration in shape and lamellar membrane system in plastid, and increased number of plastoglobuli. The cells retrieved their normal structure upon exposure to non-enzymatic antioxidants. The results of the present experiments conclude that NaCl aggravate oxidative molecules that eventually alleviate antioxidant enzymatic system. Furthermore, the salt stress knocked down by applying ascorbic acid and salicylic acid manifested by normal enzyme level and restoration of cellular structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AA:

Ascorbic acid

APX:

Ascorbate peroxidase

CAT:

Catalase

FWGR:

Fresh weight growth rate

GR:

Glutathione reductase

ROS:

Reactive oxygen species

SA:

Salicylic acid

SOD:

Superoxide dismutase

POD:

Peroxidase

References

  1. Xiong, L., & Zhu, J. K. (2002). Plant, Cell & Environment, 25, 131–139.

    Article  CAS  Google Scholar 

  2. Foyer, C. H., & Noctor, G. (2005). Plant, Cell & Environment, 28, 1066–1071.

    Article  Google Scholar 

  3. Greenway, J., & Munns, R. (1980). Annual Review of Plant Physiology, 31, 149–190.

    Article  CAS  Google Scholar 

  4. Ackerson, R. C., & Herbert, R. R. (1981). Plant Physiology, 67, 484–488.

    Article  CAS  Google Scholar 

  5. Ferrari-Iliou, R., PhamThi, A. T., & Dasilva, J. V. (1984). Physiologia Plantarum, 62, 219–224.

    Article  CAS  Google Scholar 

  6. Maroti, I., Tuba, Z., & Csik, M. (1984). Journal of Plant Physiology, 16, 1–10.

    Article  Google Scholar 

  7. Hernandez, J. A., Olmos, E., Corpas, F. J., Sevilla, F., & del Rio, L. A. (1995). Plant Science, 105, 151–167.

    Article  CAS  Google Scholar 

  8. Yamane, K., Kawasaki, M., Taniguchi, M., & Miyake, H. (2003). Journal of Plant Physiology, 160, 573–575.

    Article  CAS  Google Scholar 

  9. Mozafar, A., & Oertli, J. J. (1992). Journal of Plant Physiology, 436, 442–446.

    Google Scholar 

  10. Shirasu, K., Nakajima, H., Rajashekar, K., Dixon, R. A., & Lamb, C. (1997). Plant Cell, 9, 261–270.

    Article  CAS  Google Scholar 

  11. Senaratna, T., Touchell, D., Bunn, T., & Dixon, K. (2000). Plant Growth Regulation, 30, 157–161.

    Article  CAS  Google Scholar 

  12. Rehman, R. U., Chaudhary, M. F., Khawar, K. M., Lu, G., Mannan, A., & Zia, M. (2014). Biological, 69, 1–9.

    Article  Google Scholar 

  13. Murashige, T., & Skoog, F. (1962). Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  14. Zhou, W., Zhao, D., & Lin, X. (1997). Journal of Plant Growth Regulation, 16, 47–53.

    Article  CAS  Google Scholar 

  15. Nakano, Y., & Asada, K. (1981). Plant and Cell Physiology, 22, 867–880.

    CAS  Google Scholar 

  16. Cakmak, I., & Marschner, H. (1993). Effect of zinc nutritional status on superoxide radical and hydrogen peroxide scavenging enzymes in bean leaves. In N. J. Barrow (Ed.), Nutrition—from genetic engineering to field practice (pp. 133–137). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  17. Foyer, C. H., & Halliwell, B. (1976). Planta, 133, 21–25.

    Article  CAS  Google Scholar 

  18. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  19. Cherian, S., & Reddy, M. P. (2003). Plant Molecular Biology, 46, 193–198.

    Article  CAS  Google Scholar 

  20. Yang, Y., Wei, X., Shi, R., Fan, Q., & An, L. (2010). Journal of Plant Growth Regulation, 29, 465–476.

    Article  CAS  Google Scholar 

  21. Kumar, V., & Sharma, D. R. (1989). Journal of Experimental Botany, 40, 143–147.

    Article  Google Scholar 

  22. Queirós, F., Rodrigues, J. A., Almeida, J. M., Almeida, D. P. F., & Fidalgo, F. (2011). Plant Physiology and Biochemistry, 49, 1410–1419.

    Article  Google Scholar 

  23. Zhu, Z., Guoqiang, W., Juan, L., Qiongqiu, Q., & Jingquan, Y. (2004). Plant Science, 167, 527–533.

    Article  CAS  Google Scholar 

  24. Barth, C., De Tullio, M., & Conklin, P. L. (2006). Journal of Experimental Botany, 57, 1657–1665.

    Article  CAS  Google Scholar 

  25. Pavet, V., Ollimos, E., Kiddle, G., Kumar, S., Antonaiw, J., Alvarez, M. E., et al. (2005). Plant Physiology, 139, 1291–1303.

    Article  CAS  Google Scholar 

  26. Beltagi, M. S. (2008). African Journal of Plant Science, 2, 118–123.

    Google Scholar 

  27. Kováčik, J., Klejdus, B., Hedbavny, J., & Bačkor, M. (2009). Ecotoxicology, 18, 544–554.

    Article  Google Scholar 

  28. Sawada, Y., Katsumata, T., Kitamura, J., Kawaide, H., Nakajima, M., Asami, T., et al. (2008). Journal of Experimental Botany, 59, 3383–3393.

    Article  CAS  Google Scholar 

  29. Scalet, M., Federico, R., Guido, M. C., & Manes, F. (1995). Environmental and Experimental Botany, 35, 417–425.

    Article  CAS  Google Scholar 

  30. Habib, D., Chaudhary, M. F., & Zia, M. (2013). Applied Biochemistry and Biotechnology. doi:10.1007/s12010-013-0591-6.

    Google Scholar 

  31. Slesak, I., Miszalski, Z., Karpinska, B., Niewiadomska, E., Ratajczak, R., & Karpinski, S. (2002). Plant Physiology and Biochemistry, 40, 669–677.

    Article  CAS  Google Scholar 

  32. Lee, D. H., Kim, Y. S., & Lee, C. B. (2001). Journal of Plant Physiology, 158, 737–745.

    Article  CAS  Google Scholar 

  33. Gossett, D. R., Millhollon, E. P., & Lucas, M. C. (1994). Crop Science, 34, 706–714.

    Article  CAS  Google Scholar 

  34. Hernandez, J. A., Jimenez, A., Mullineaux, P., & Sevilla, F. (2000). Plant, Cell & Environment, 23, 853–862.

    Article  CAS  Google Scholar 

  35. Gueta-Dahan, Y., Yaniv, Z., Zilinskas, B. A., & Ben-Hayyim, G. (1997). Planta, 203, 460–469.

    Article  CAS  Google Scholar 

  36. Kefeli, V. I. (1981). Applied Biochemistry and Microbiology, 17, 5–15.

    CAS  Google Scholar 

  37. Choudhury, N. K., Cho, T. H., & Huffaker, R. C. (1993). Journal of Plant Physiology, 141, 551–556.

    Article  CAS  Google Scholar 

  38. Guan, L., & Scandalios, J. G. (1993). Plant Journal, 3, 527–536.

    Article  CAS  Google Scholar 

  39. Willekens, H., Chamnongpol, S., Davey, M., Schraudner, M., Langebartels, C., & Van Montagu, M. (1997). EMBO Journal, 16, 4806–4816.

    Article  CAS  Google Scholar 

  40. Parida, A. K., Das, A. B., & Mohanty, P. (2004). Journal of Plant Physiology, 161, 531–542.

    Article  CAS  Google Scholar 

  41. Cherian, S., Reddy, M. P., & Pandya, J. B. (1999). Indian Journal of Plant Physiology, 4, 266–270.

    CAS  Google Scholar 

  42. Cheeseman, J. M., Herendeen, L. B., Cheeseman, A. T., & Clough, B. F. (1997). Plant, Cell & Environment, 20, 579–588.

    Article  CAS  Google Scholar 

  43. Hernández, J. A., Campillo, A., Jiménez, A., Alarcon, J. J., & Sevilla, F. (1999). New Phytologist, 141, 241–251.

    Article  Google Scholar 

  44. Foyer, C. H., & Noctor, G. (2011). Plant Physiology, 155, 2–18.

    Article  CAS  Google Scholar 

  45. CaasiLit, M., Whitecross, M. I., Nayudu, M., & Tanner, G. J. (1997). Australian Journal of Plant Physiology, 24, 261–274.

    Article  CAS  Google Scholar 

  46. Binzel, M. L., Hasegawa, P. M., Rhodes, D., Handa, S., Handa, A. K., & Bressan, R. A. (1987). Plant Physiology, 84, 1408–1415.

    Article  CAS  Google Scholar 

  47. Koryo, H. W. (1997). Journal of Experimental Botany, 48, 693–706.

    Article  Google Scholar 

  48. Walker, K. E., & Taiz, L. (1988). Botanica Acta, 101, 182–186.

    Article  CAS  Google Scholar 

  49. Holopainen, T., Anttonen, S., Wulff, A., Palomäki, V., & Kärenlampi, L. (1992). Agriculture, Ecosystems & Environment, 42, 365–398.

    Article  CAS  Google Scholar 

  50. Koryo, H. W., Stelzer, R., & Huchzermeyeyer, B. (1993). Botanica Acta, 106, 110–119.

    Article  Google Scholar 

  51. Zhang, F. Q., Shi, W. Y., Jin, Z. X., & Shen, Z. G. (2003). Journal of Plant Nutrition, 26, 1779–1788.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Zia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, R.U., Zia, M., Abbasi, B.H. et al. Ascorbic Acid and Salicylic Acid Mitigate NaCl Stress in Caralluma tuberculata Calli. Appl Biochem Biotechnol 173, 968–979 (2014). https://doi.org/10.1007/s12010-014-0890-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0890-6

Keywords

Navigation