Skip to main content
Log in

Antioxidant Response of Stevia rebaudiana B. to Polyethylene Glycol and Paclobutrazol Treatments Under In Vitro Culture

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This investigation was carried out with the aim of determining the effect of paclobutrazol (PBZ) (0 and 2 mg l−1) and polyethylene glycol (PEG) (0, 2, 4 and 6 % w/v of PEG 6000) treatments on antioxidant system of Stevia rebaudiana Bertoni under in vitro condition. Analysis of data showed that PEG treatment significantly increased hydrogen peroxide (H2O2) and phenolic contents, while PBZ treatment limited the effect of PEG on them. Our data revealed that PEG treatment significantly increased total antioxidant capacity, catalase (CAT), ascorbate peroxidase (APX), polyphenol oxidase (PPO) and peroxidase (POD) activity, while it inversely decreased glutathione reductase (GR) activity. The superoxide dismutase (SOD) activity was not affected by PEG treatment. PBZ treatment induced significantly higher levels of CAT and GR activity and lower levels of SOD activity in PEG-treated plants. PBZ in combination with PEG resulted in no significant difference on APX activity with PEG treatment alone. PBZ treatment prevented the effect of PEG on the PPO activity. PEG (with or without PBZ) treatment increased the ascorbate pool, whereas total glutathione level was not affected by PEG. Our finding indicated that PBZ reduced the negative effect of PEG treatment by quenching H2O2 accumulation and increasing the CAT activity. Collectively, the antioxidant capacity of S. rebaudiana in PEG treatment condition was associated with active enzymatic and non-enzymatic defence systems which partly could be improved by the PBZ treatment. In addition, a higher accumulation of phenolic compounds leads to a more potent reactive oxygen species scavenging activity in S. rebaudiana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Illustration 1
Fig. 1
Fig. 2
Illustration 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ASC:

Ascorbate

APX:

Ascorbate peroxidase

CAT:

Catalase

DHA:

Dehydroascorbate

EDTA:

Ethylenediaminetetraacetic acid

POD:

Peroxidase

GR:

Glutathione reductase

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

H2O2 :

Hydrogen peroxide

MDA:

Malondialdehyde

MS:

Murashige and Skoog

NADPH:

Nicotinamide adenine dinucleotide phosphate

NBT:

Nitroblue tetrazolium

PAGE:

Polyacrylamide gel electrophoresis

PBZ:

Paclobutrazol

PEG:

Polyethylene glycol

PPO:

Polyphenol oxidase

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TEMED:

N,N,N′,N′-tetramethylethylenediamine

References

  1. Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126.

    Article  CAS  Google Scholar 

  2. Asada, K., & Takahashi, M. (1987). Production and scavenging of active oxygen in photosynthesis. In D. J. Kyle, B. Osmond, & C. J. Arntzen (Eds.), Photoinhibition. pp. 227–287. Amsterdam: Elsevier.

    Google Scholar 

  3. Asare-Boamah, N. K., Hofstra, G., Fletcher, R. A., & Dumbroff, E. B. (1986). Triadimefon protect bean plants from water stress through its effect on abscisic acid. Plant and Cell Physiology, 27, 383–390.

    CAS  Google Scholar 

  4. Bartosz, G. (1997). Oxidative stress in plants. Acta Physiologiae Plantarum, 19, 47–64.

    Article  CAS  Google Scholar 

  5. Basu, S., Roychoudhury, A., Saha, P. P., & Sengupta, D. N. (2010). Differential antioxidative responses of indica rice cultivars to drought stress. Plant Growth Regulation, 60, 51–59.

    Article  CAS  Google Scholar 

  6. Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44, 276–287.

    Article  CAS  Google Scholar 

  7. Bradford, M. (1976). A rapid and sensitive method for the quantification of microgram quantities in utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 284–254.

    Article  Google Scholar 

  8. Drazkiewicz, M., Skorzynska-Polit, E., & Krupa, Z. (2003). Response of the ascorbate–glutathione cycle to excess copper in Arabidopsis thaliana (L.). Plant Science, 164, 195–202.

    Article  CAS  Google Scholar 

  9. Flurkey, W. H., & Jen, J. J. (1980). Purification of peach polyphenoloxidase in the presence of added protease inhibitors. Journal of Food Biochemistry, 4, 29–41.

    Article  CAS  Google Scholar 

  10. Foyer, C. H., & Halliwell, B. (1976). The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta, 133, 21–25.

    Article  CAS  Google Scholar 

  11. Geuns, M. C. J. (2003). Molecules of interest: stevioside. Phytochemistry, 64, 913–921.

    Article  CAS  Google Scholar 

  12. Griffith, O. W. (1985). Glutathione and glutathione disulfide. In H. U. Bergmeyer (Ed.), Methods of enzymatic analysis (pp. 521–529). Weinheim: Verlagsgesellschaft mhH.

    Google Scholar 

  13. Hajihashemi, S., & Ehsanpour, A. A. (2013). Influence of exogenously applied paclobutrazol on some physiological traits and growth of Stevia rebaudiana under in vitro drought stress. Biologia, 68, 1–7.

    Article  Google Scholar 

  14. Hajihashemi, S., Geuns, J.M.C. Radical scavenging activity of steviol glycosides, steviol glucuronide, hydroxytyrosol, metformin, aspirin and leaf extract of Stevia rebaudiana. Free Radicals Antioxidant. In Press, 2014.

  15. Hatano, T., Edamatsu, R., Mori, A., Fujita, Y., & Yasuhara, E. (1989). Effect of interaction of tannins with co-existing substances VI. Effects of tannins and related polyphenols on superoxide anion radical and on DPPH radical. Chemical Pharmaceutical Bulletin, 37, 2016–2021.

    Article  CAS  Google Scholar 

  16. Jaleel, C. A., Gopi, R., Alagu Lakshmanan, G. M., & Panneerselvam, R. (2006). Triadimefon induced changes in the antioxidant metabolism and ajmalicine production in Catharanthus roseus (L.) G. Don. Plant Science, 171, 271–276.

    Article  CAS  Google Scholar 

  17. Kampfenkel, K., Van Montagu, M., & Inzé, D. (1995). Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Analytical Biochemistry, 225, 165–167.

    Article  CAS  Google Scholar 

  18. Kim, I. S., Yang, M., Lee, O. H., & Kang, S. N. (2011). The antioxidant activity and the bioactive compounds content of Stevia rebaudiana water extracts. Food Science and Technology, 44, 1328–1332.

    CAS  Google Scholar 

  19. Kocsy, G., Galiba, G., & Brunold, C. (2001). Role of glutathione in adaptation and signaling during chilling and cold acclimation in plants. Plant Physiology, 113, 158–164.

    Article  CAS  Google Scholar 

  20. Kraus, T. E., & Fletcher, R. A. (1994). Paclobutrazol protects wheat seedlings from heat and paraquat injury. Is detoxification of active oxygen involved? Plant and Cell Physiology, 35, 45–52.

    CAS  Google Scholar 

  21. Lemus-Mondaca, R., Vega-Galvez, A., Zura-Bravo, L., & Ah-Hen, K. (2012). Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: a comprehensive review on the biochemical, nutritional and functional aspects. Food Chemistry, 132, 1121–1132.

    Article  CAS  Google Scholar 

  22. Marshall, J. G., Rutledge, R. G., Blumwald, E., & Dumbroff, E. (2000). Reduction in turgid water volume in jack pine, white spruce and black spruce in response to drought and paclobutrazol. Tree Physiology, 20, 701–707.

    Article  CAS  Google Scholar 

  23. Marshall, J. G., Scarrat, J. B., & Dumbroff, E. B. (1991). Induction of drought resistance by abscisic acid and paclobutrazol in jack pine. Tree Physiology, 8, 415–421.

    Article  CAS  Google Scholar 

  24. McKersie, B. D., Bowley, S. R., & Jones, K. S. (1999). Winter survival of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiology, 119, 839–848.

    Article  CAS  Google Scholar 

  25. Michel, B. E., & Kaufmann, M. R. (1973). The osmotic potential of polyethylene glycol 6000. Plant Physiology, 51, 194–196.

    Article  Google Scholar 

  26. Moller, I. M., Jensen, P. E., & Hansson, A. (2007). Oxidative modifications to cellular components in plants. Annual Review of Plant Biology, 58, 459–481.

    Article  Google Scholar 

  27. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiology, 15, 473–479.

    Article  CAS  Google Scholar 

  28. Noctor, G., & Foyer, C. (1998). Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 249–279.

    Article  CAS  Google Scholar 

  29. Pastori, G. M., & Trippi, V. S. (1993). Cross resistance between water and oxidative stresses in wheat leaves. Journal of Agricultural Science, 120, 289–294.

    Article  CAS  Google Scholar 

  30. Patade, V. Y., Bhargava, S., & Suprasanna, P. (2012). Effects of NaCl and iso-osmotic PEG stress on growth, osmolytes accumulation and antioxidant defense in cultured sugarcane cells. Plant Cell, Tissue and Organ. Culture, 108, 279–286.

    CAS  Google Scholar 

  31. Plewa, M. J., Smith, S. R., & Wanger, E. D. (1991). Diethyldithiocarbamate suppresses the plant activation of aromatic amines into mutagens by inhibiting tobacco cell peroxidase. Mutation Research, 247, 57–64.

    Article  CAS  Google Scholar 

  32. Sakthivelu, G., Devi, M. K. A., Giridhar, P., Rajasekaran, T., Ravishankar, G. A., Nedev, T., et al. (2008). Drought-induced alterations in growth, osmotic potential and in vitro regeneration of soybean cultivars. General and Applied Plant Physiology, 34(1–2), 103–112.

    CAS  Google Scholar 

  33. Sen, A., & Alikamanoglu, S. (2011). Effect of salt stress on growth parameters and antioxidant enzymes of different wheat (Triticum aestivum L.) varieties on in vitro tissue culture. Fresenius Environmental Bulletin, 20, 489–495.

    CAS  Google Scholar 

  34. Shehab, G. G., Ahmed, O. K., & El-Beltagi, H. S. (2010). Effects of various chemical agents for alleviation of drought stress in rice plants (Oryza sativa L.). Notulae Botanicae Horti Agrobotanici Cluj, 38(1), 139–148.

    CAS  Google Scholar 

  35. Shukla, S., Mehta, A., Mehta, P., & Bajpai, V. K. (2012). Antioxidant ability and total phenolic content of aqueous leaf extract of Stevia rebaudiana Bert. Experimental Toxicologic Pathology, 64(7–8), 807–811.

    Article  CAS  Google Scholar 

  36. Singleton, V. L., & Rossi, J. R. (1965). Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagent. American Journal of Enology and Viticulture, 16, 144–158.

    CAS  Google Scholar 

  37. Szôllôsi, R. (2002). Varga, I.S. Total antioxidant power in some species of Labiatae (Adaptation of FRAP method). Proceedings of the 7th Hungarian Congress on Plant Physiology. Acta Biologica Szegediensis, 46, 125–127.

    Google Scholar 

  38. Thipyapong, P., Kelkonian, J., Wolfe, D. W., & Steffens, J. C. (2004). Suppression of polyphenol oxidases increases stress tolerance in tomato. Plant Science, 167, 693–703.

    Article  CAS  Google Scholar 

  39. Torres-Franklin, M. L., Contour-Ansel, D., Zuily-Fodil, Y., & Pham-Thi, A. T. (2008). Molecular cloning of glutathione reductase cDNAs and analysis of GR gene expression in cowpea and common bean leaves during recovery from moderate drought stress. Journal of Plant Physiology, 165, 514–521.

    Article  CAS  Google Scholar 

  40. Ünyayar, S., Keleş, Y., & Çekiç, F. Ö. (2005). The antioxidative response of two tomato species with different drought tolerances as a result of drought and cadmium stress combinations. Plant, Soil and Environment, 51, 57–64.

    Google Scholar 

  41. Velikova, V., Yordanov, I., & Edrava, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Protective role of exogenous polyamines. Plant Science, 151, 59–66.

    Article  CAS  Google Scholar 

  42. Veljovic-Jovanovic, S., Kukavica, B., Stevanovic, B., & Navari-Izzo, F. (2006). Senescence- and drought-related changes in peroxidase and superoxide dismutase isoforms in leaves of Ramonda serbica. Journal of Experimental Botany, 57, 1759–1768.

    Article  CAS  Google Scholar 

  43. Xu, X. Y., Shi, G. X., Wang, J., Zhang, L. L., & Kang, Y. N. (2011). Copper-induced oxidative stress in Alternanthera philoxeroides callus. Plant Cell, Tissue and Organ. Culture, 106, 243–251.

    CAS  Google Scholar 

  44. Zhang, J., & Kirkham, M. B. (1996). Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytologist, 132, 361–373.

    Article  CAS  Google Scholar 

  45. Zhu, L. H., Peppal, A., Li, X. Y., & Welander, M. (2004). Changes of leaf water potential and endogenous cytokinins in young apple trees treated with or without paclobutrazol under drought conditions. Scientia Horticulturae, 99, 133–141.

    Article  CAS  Google Scholar 

  46. Živković, S., Popović, M., Dragišić-Maksimović, J., Momčilović, I., & Grubišić, D. (2010). Dehydration-related changes of peroxidase and polyphenol oxidase activity in fronds of the resurrection fern Asplenium ceterach L. Archives of Biological Science Belgrade, 62(4), 1071–1081.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the University of Isfahan and the Plant Stress Center of Excellence (PSCE) for their support and Stijn Ceunen for the help with the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Akbar Ehsanpour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajihashemi, S., Ehsanpour, A.A. Antioxidant Response of Stevia rebaudiana B. to Polyethylene Glycol and Paclobutrazol Treatments Under In Vitro Culture. Appl Biochem Biotechnol 172, 4038–4052 (2014). https://doi.org/10.1007/s12010-014-0791-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0791-8

Keywords

Navigation