Skip to main content

Advertisement

Log in

Microbiological Transformation of L-Tyrosine to L-Dopa from Methanol Pretreated Biomass of a Novel Coriolus versicolor under Submerged Culture

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The present study is concerned with the microbiological transformation of L-tyrosine to L-dopa by a newly isolated turkey tail mushroom Coriolus versicolor DOB-4. As tyrosinase (catechol oxidase, EC 1.10.3.1) is an extracellular enzyme, therefore biomass was used as an enzyme source in the reaction mixture. Biomass particles were pretreated with methanol and oven dried at 105 °C for 2 h. The optimal L-dopa production was achieved when 1.5 mg/ml L-tyrosine was used as the basal substrate. Thin layer chromatography and high-performance liquid chromatography analysis depicted that citric acid supports higher substrate conversion and product formation rates. A noticeable enhancement was observed when process parameters viz. L-tyrosine concentration (1.5 mg/ml), citric acid (1.5 mg/ml), time of incubation (50 min), and reaction temperature (60 °C) were optimized using Plackett–Burman design. The maximum production of L-dopa was found to be 0.872 mg/ml with L-tyrosine consumption of 1.002 mg/ml. The model terms were found highly significant (HS, p ≤ 0.05), suggesting the potential commercial utility of the culture (df = 3, LSD = 0.342).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Sketch 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Image 1
Fig. 7

Similar content being viewed by others

References

  1. Buttner, T., Kuhanw, M., & Patzold, T. (2005). Journal of Neurological Transactions, 7, 13–19.

    Google Scholar 

  2. Napolitano, M., Picconi, B., & Centonze, D. (2006). Neuroscience, 398, 211–214.

    CAS  Google Scholar 

  3. Karlson, R. H., & Levitan, D. R. (1990). Oecologia, 82, 40–44.

    Article  Google Scholar 

  4. Hyland, K., & Clayton, P. T. (1992). Clinical Chemistry, 38, 2405–2410.

    CAS  Google Scholar 

  5. Inamdar, S. A., Joshi, S. M., Jadhav, J. P., & Bapat, V. A. (2012). Natural Products and Bioprospects, 2, 16–20.

    Article  CAS  Google Scholar 

  6. Patil, S. A., Surwase, S. N., Jadhav, S. B., & Jadhav, J. P. (2013). Biochemical Engineering Journal, 74, 36–45.

    Article  CAS  Google Scholar 

  7. Gurme, S. T., Surwase, S. N., Patil, S. A., Jadhav, S. B., & Jadhav, J. P. (2013). Indian Journal of Microbiology, 53, 194–198.

    Article  CAS  Google Scholar 

  8. Ali, S., Jeffry, S., & Haq, I. (2007). BMC Biotechnology, 7, 50–57.

    Article  Google Scholar 

  9. Surwase, S. N., Patil, S. A., Jadhav, S. B., & Jadhav, J. B. (2012). Microbial Biotechnology, 5, 731–737.

    Article  CAS  Google Scholar 

  10. Ali, S., & Haq, I. (2012). BMC Biotechnology, 10, 86. doi:10.1186/1472-6750-10-86.

    Article  Google Scholar 

  11. Krishnaveni, R., Vandana-Rathod, M., Thakur, S., & Neelgund, Y. F. (2009). Current Microbiology, 58, 122–128.

    Article  CAS  Google Scholar 

  12. Oba, K., Teramukai, S., Kobayashi, M., & Matsui, T. (2007). Canadian Immunology Journal, 56, 905–911.

    Article  CAS  Google Scholar 

  13. Raju, B. G., Rao, G. H., & Ayyanna, C. (1993). Visakhapatnam, 82, 106–110.

    Google Scholar 

  14. Pialis, P., Jimenez, M. C., & Bradley, A. S. (2002). Journal of Biotechnology, 51, 141–147.

    Google Scholar 

  15. Rayner, A. D. M., & Todd, N. K. (1978). Transactions of the British Mycological Society, 71, 99–106.

    Article  Google Scholar 

  16. Bergmeyer, H. U. (1974). Methods of enzymatic analysis. New York: Wiley.

    Google Scholar 

  17. Bradley, M., Pialis, P., & Jimenz, C. (1996). Biotechnology & Bioengineering, 51, 141–147.

    Article  Google Scholar 

  18. Dastager, S. G., Li, W. J., Dayanand, A., Tang, S. K., Tain, X. P., Zhi, Y. Z., Xu, L. H., & Jiang, C. L. (2006). African Journal of Biotechnology, 5, 1131–1134.

    CAS  Google Scholar 

  19. Marusek, C. M., Trobaugh, N. M., & Flurkey, W. H. (2006). Journal of Biochemistry, 100, 108–123.

    CAS  Google Scholar 

  20. Snedecor, G. W., & Cochran, W. G. (1980). Statistical methods. Ames: Iowa State University Press.

    Google Scholar 

  21. Ahuja, S. K., Ferreira, G. M., & Morreira, A. R. (2004). Biotechnology & Bioengineering, 85, 666–675.

    Article  CAS  Google Scholar 

  22. Marumo, K., & Waite, J. H. (2003). Journal of Biochemistry, 872, 98–103.

    Google Scholar 

  23. Sih, J., Foss, C., & Rosazza, J. (1969). Journal of American Chemical Society, 91, 6204–6206.

    Article  CAS  Google Scholar 

  24. Ros, J. R., Rodriguez, J. N., & Garcia, F. (1993). Journal of Biochemistry, 295, 309–372.

    CAS  Google Scholar 

  25. Mason, H. S. (1964). Journal of Biological Chemistry, 172, 83–85.

    Google Scholar 

  26. Hee, S. P., Lee, J. Y., & Kim, H. S. (1998). Biotechnology & Bioengineering, 58, 339–343.

    Article  Google Scholar 

  27. Danial, R. M., Peterson, M. E., & Donson, M. J. (2010). Journal of Biochemistry, 425, 353–360.

    Article  Google Scholar 

  28. Minton, A. P. (2001). Journal of Biological Chemistry, 276, 10577–10580.

    Article  CAS  Google Scholar 

  29. Deker, H. (2000). Trends in Biochemical Sciences, 25, 392–397.

    Article  Google Scholar 

  30. Almeida, P. R., Frases, S., Araujo, G. S., de Oliveira, M. M., Gerfen, G. J., Nosanchuk, J. D., & Zancope-Oliveira, R. M. (2012). Applied Environmental Microbiology, 78, 8623–8630.

    Article  Google Scholar 

  31. Madani, W., Kermasha, S., & Biasakawski, B. (1999). Food Science, 52, 1001–1008.

    CAS  Google Scholar 

  32. Scribhers, E. T., Tang, E., & Bradley, S. G. (1973). Applied Microbiology, 25, 873–879.

    Google Scholar 

  33. Conn, E., Stumpf, P. K., & Bruening, G. (1987). Outlines of Biochemistry (5th ed.). Singapore: Wiley.

    Google Scholar 

  34. Hornykiewicz, O. (2002). Brazilian Journal of Microbiology, 23, 67–70.

    Google Scholar 

  35. Burkert, J. F. M., Kalil, S. J., Filho, F. M., & Rodrigues, M. I. (2006). Brazilian Journal of Chemical Engineering, 23, 163–170.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Director, IIB is acknowledged for moral support. Thanks to Mr. Naeem Akhtar, Department of Botany for his help in the identification of turkey’s tail mushroom (C. versicolor DOB-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sikander Ali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, S., Rizvi, N. Microbiological Transformation of L-Tyrosine to L-Dopa from Methanol Pretreated Biomass of a Novel Coriolus versicolor under Submerged Culture. Appl Biochem Biotechnol 172, 2041–2054 (2014). https://doi.org/10.1007/s12010-013-0658-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0658-4

Keywords

Navigation