Skip to main content
Log in

Aptamer-based Biosensor for Detection of Phenylalanine at Physiological pH

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A simple, sensitive aptamer-based biosensor for the detection of phenylalanine is developed using the electrochemical transduction method. For this proposed aptasensor, a 5-thiol-terminated aptamer is covalently attached onto a gold electrode. At the first time, the electrode was evaluated as an electrochemical aptasensor for determination of phenylalanine in aqueous solutions. This sensor was tested in a Tris–HCl buffer with physiological pH = 7.4 by cyclic voltammetry and differential pulse voltammetry. The detection limit and sensitivity of the modified electrode toward phenylalanine were estimated to be 1 nM (S/N = 3) and 0.367 μA nM−1, respectively. The linear range of the signal was observed between 1 and 10 nM of phenylalanine with 0.9914 correlation factor. The herein-described approach is expected to promote the exploitation of aptamer-based biosensors for protein assays in biochemical and biomedical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bard, A. J., & Faulkner, L. R. (2001). Electrochemical methods. New York: Wiley. Chapter 12.

    Google Scholar 

  2. Deng, C., Shang, C., Hu, Y., & Zhang, X. (2002). Rapid diagnosis of phenylketonuria and other aminoacidemias by quantitative analysis of amino acids in neonatal blood spots by gas chromatography–mass spectrometry. Journal of Chromatography B: Analytical Technology in the Biomedical and, Life Sciences, 775, 115–120. doi:10.1016/S1570-0232(02)00283-0.

    Article  CAS  Google Scholar 

  3. Ellington, A. D., & Szostak, J. W. (1990). In vitro selection of RNA molecules that bind specific ligands. Nature, 346, 818–822. doi:10.1038/346818a0.

    Article  CAS  Google Scholar 

  4. Ferapontova, E. E., Olsen, E. M., & Gothelf, K. V. (2008). An RNA aptamer-based electrochemical biosensor for detection of theophylline in serum. Journal of the American Chemical Society, 130, 4256–4258. doi:10.1021/ja711326b.

    Article  CAS  Google Scholar 

  5. Hasanzadeh, M. (2009). Cobalt hydroxide nanoparticles modified glassy carbon electrode as a biosensor. In: Karim-Nezhad, G., Shadjou, N., Khalilzadeh, B., Saghatforoush, L. A., Abnosi, M. H., Ershad, S. (eds), for electrooxidation and determination of some amino acids. Analytical Biochemistry, 389, 130-137, doi: 10.1016/j.ab.2009.03.024.

  6. Hasanzadeh, M., Shadjou, N., Chen, S. T., & Sheykhzadeh, P. (2012). MCM-41-NH2 as an advanced nanocatalyst for electrooxidation and determination of amino acids. Catalysis Communications, 19, 21–27. doi:10.1016/j.catcom.2011.12.007.

    Article  CAS  Google Scholar 

  7. Hasanzadeh, M., Shadjou, N., & Omidinia, E. (2013). Mesoporous silica (MCM-41)-Fe2O3 as a novel magnetic nanosensor for determination of trace amounts of amino acids. Colloids and Surfaces B: Biointerfaces, 108, 52–59. doi:10.1016/j.colsurfb.2013.02.015.

    Article  CAS  Google Scholar 

  8. Hendriksz, C. J., & Walter, J. H. (2004). Update on phenylketonuria. Current Paediatrics, 14, 400–406. doi:10.1016/j.cupe.2004.05.003.

    Article  Google Scholar 

  9. Herne, T. M., & Tarlov, M. J. (1997). Characterization of DNA probes immobilized on gold surfaces. Journal of the American Chemical Society, 119, 8916–8920. doi:10.1021/ja9719586.

    Article  CAS  Google Scholar 

  10. Kang, Y., Feng, K. J., Chen, J. W., Jiang, J. H., Shen, G. L., & Yu, R. Q. (2008). Electrochemical detection of thrombin by sandwich approach using antibody and aptamer. Bioelectrochemistry, 73, 76–81. doi:10.1016/j.bioelechem.2008.04.024.

    Article  CAS  Google Scholar 

  11. Khezrian, S., Salimi, A., Teymourian, H., & Hallaj, R. (2013). Label-free electrochemical IgE aptasensor based on covalent attachment of aptamer onto multiwalled carbon nanotubes/ionic liquid/chitosan nanocomposite modified electrode. Biosensors and Bioelectronics, 43, 218–225. doi:10.1016/j.bios.2012.12.006.

    Article  CAS  Google Scholar 

  12. Kitagawa, T., Smith, B. A., & Brown, E. S. (1975). Gas-liquid chromatography of phenylalanine and its metabolites in serum and urine of various hyperphenylalaninemic subjects, their relatives, and controls. Clinical Chemistry, 21, 735–740.

    CAS  Google Scholar 

  13. Kohlmeier, M. (2003). Nutrient metabolism (pp. 314–321). London: Academic.

    Book  Google Scholar 

  14. Levicky, R., Herne, T. M., Tarlov, M. J., & Satija, S. K. (1998). Using self-assembly to control the structure of DNA monolayers on gold: a neutron reflectivity study. Journal of the American Chemical Society, 120, 9787–9792. doi:10.1021/ja981897r.

    Article  CAS  Google Scholar 

  15. Mahan, L. K., Escott-Stump, S. (2008). Food & nutrition therapy, 12th ed., Saunders, Philadelphia. 1141-1169.

  16. Wu, Z. S., Zheng, F., Shen, G. L., & Yu, R. Q. (2009). A hairpin aptamer-based electrochemical biosensing platform for the sensitive detection of proteins. Biomaterials, 30, 2950–2955. doi:10.1016/j.biomaterials.2009.02.017.

    Article  CAS  Google Scholar 

  17. Yao, C., Qi, Y., Zhao, Y., Xiang, Y., Chen, Q., & Fu, W. (2009). Aptamer-based piezoelectric quartz crystal microbalance biosensor array for the quantification of IgE. Biosensors and Bioelectronics, 24, 2499–2503. doi:10.1016/j.bios.2008.12.036.

    Article  CAS  Google Scholar 

  18. Zayats, M., Huang, Y., Gill, R., Ma, C., & Willner, I. (2006). Label-free and reagentless aptamer-based sensors for small molecules. Journal of the American Chemical Society, 128, 13666–13667. doi:10.1021/ja0651456.

    Article  CAS  Google Scholar 

  19. Yao, W., Wang, L., Wang, H., Zhang, X., & Li, L. (2009). An aptamer-based electrochemiluminescent biosensor for ATP detection. Biosensors and Bioelectronics, 24, 3269–3274. doi:10.1016/j.bios.2009.04.016.

    Article  CAS  Google Scholar 

  20. Matsubara, Y., Heininger, J. A., & Lin, Y. Y. (1984). Improved diagnosis of classical vs atypical phenylketonuria by liquid chromatography. Clinical Chemistry, 30, 278–280.

    CAS  Google Scholar 

  21. Naghib, S. M., Rabiee, M., Omidinia, E., & Khoshkenara, P. (2012). Investigation of a biosensor based on phenylalanine dehydrogenase immobilized on a polymer-blend film for phenylketonuria diagnosis. Electroanalysis, 24, 407–417. doi:10.1002/elan.201100391.

    Article  CAS  Google Scholar 

  22. Naghib, S. M., Rabiee, M., Omidinia, E., Khoshkenara, P., & Zeini, D. (2012). Biofunctionalization of dextran-based polymeric film surface through enzyme immobilization for phenylalanine determination. International Journal of Electrochemical Science, 7, 120–135.

    CAS  Google Scholar 

  23. Saghatforoush, L. A., Hasanzadeh, M., Shadjou, N., & Khalilzadeh, B. (2011). Deposition of new thia-containing Schiff-base iron (III) complexes onto carbon nanotube-modified glassy carbon electrodes as a biosensor for electrooxidation and determination of amino acids. Electrochimica Acta, 56, 1051–1061. doi:10.1016/j.electacta.2010.10.031.

    Article  CAS  Google Scholar 

  24. Schuett, V. E. (2002). Low protein food list for PKU (2nd ed.). USA: National PKU News.

    Google Scholar 

  25. Steel, A. B., Herne, T. M., & Tarlov, M. (1998). Electrochemical quantitation of DNA immobilized on gold. Journal Analytical Chemistry, 70, 4670–4677. doi:10.1021/ac980037q.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of this work by the Pasteur Institute of Iran and Drug Applied Research Center, Tabriz University of Medical Sciences. We especially thank Ali Khaneh-Zar and Hamid Shahbaz-Mohammadi.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eskandar Omidinia or Mohammad Hasanzadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omidinia, E., Shadjou, N. & Hasanzadeh, M. Aptamer-based Biosensor for Detection of Phenylalanine at Physiological pH. Appl Biochem Biotechnol 172, 2070–2080 (2014). https://doi.org/10.1007/s12010-013-0656-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0656-6

Keywords

Navigation