Skip to main content
Log in

Screening Factors Influencing the Production of Astaxanthin from Freshwater and Marine Microalgae

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Astaxanthin, a carotenoid pigment found in several aquatic organisms, is responsible for the red colour of salmon, trout and crustaceans. In this study, astaxanthin production from freshwater microalga Chlorella sorokiniana and marine microalga Tetraselmis sp. was investigated. Cell growth and astaxanthin production were determined spectrophotometrically at 620 and 480 nm, respectively. Astaxanthin was extracted using acetone and measured subsequent to biomass removal. Aerated conditions favoured astaxanthin production in C. sorokiniana, whereas Tetraselmis sp. was best cultured under unaerated conditions. C. sorokiniana produced more astaxanthin with the highest yield reached at 7.83 mg/l in 6.0 mM in nitrate containing medium compared to Tetraselmis sp. which recorded the highest yield of only 1.96 mg/l in 1.5 mM nitrate containing medium. Production in C. sorokiniana started at the early exponential phase, indicating that astaxanthin may be a growth-associated product in this microalga. Further optimization of astaxanthin production was performed using C. sorokiniana through a 23 full factorial experimental design, and a yield of 8.39 mg/l was achieved. Overall, the study has shown that both microalgae are capable of producing astaxanthin. Additionally, this research has highlighted C. sorokiniana as a potential astaxanthin producer that could serve as a natural astaxanthin source in the current market.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cardozo, K. H. M., Guaratini, T., Barros, M. P., Falcão, V. R., Tonon, A. P., Lopes, N. P., Campos, S., Torres, M. A., Souza, A. O., Colepicolo, P., & Pinto, E. (2007). Comparative Biochemistry and Physiology, Part C: Toxicology & Pharmacology, 146, 60–78.

    Article  Google Scholar 

  2. Hu, Z. C., Zheng, Y. G., Wang, Z., & Shen, Y. C. (2006). Enzyme and Microbial Technology, 39, 586–590.

    Article  CAS  Google Scholar 

  3. Harker, M., Tsavalos, A. J., & Young, A. J. (1996). Journal of Fermentation and Bioengineering, 82, 113–118.

    Article  CAS  Google Scholar 

  4. Milledge, J. (2011). Reviews in Environmental Science and Biotechnology, 10, 31–41.

    Article  Google Scholar 

  5. Gong, X., & Chen, F. (1998). Process Biochemistry, 33, 385–391.

    Article  CAS  Google Scholar 

  6. Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Journal of Bioscience and Bioengineering, 101, 87–96.

    Article  CAS  Google Scholar 

  7. Guerin, M., Huntley, M. E., & Olaizola, M. (2003). Trends in Biotechnology, 21, 210–216.

    Article  CAS  Google Scholar 

  8. Cifuentes, A. S., Gonzalez, M. A., Vargas, S., Hoeneisen, M., & Gonzalez, N. (2003). Biological Research, 36, 343–357.

    Article  CAS  Google Scholar 

  9. Choi, Y. E., Yun, Y. S., & Park, J. M. (2002). Biotechnology Progress, 18, 1170–1175.

    Article  CAS  Google Scholar 

  10. Raman, R., & Mohamad, S. E. (2012). Pakistan Journal of Biological Sciences: PJBS, 15, 1182–1186.

    Article  Google Scholar 

  11. Harker, M., Tsavalos, A. J., & Young, A. J. (1996). Bioresource Technology, 55, 207–214.

    Article  CAS  Google Scholar 

  12. de-Bashan, L. E., Trejo, A., Huss, V. A., Hernandez, J. P., & Bashan, Y. (2008). Bioresource Technology, 99, 4980–4989.

    Article  CAS  Google Scholar 

  13. Ruen-ngam, D., Shotipruk, A., & Pavasant, P. (2010). Separation Science and Technology, 46, 64–70.

    Article  Google Scholar 

  14. Sükran, D., Günes, T., & Sivaci, R. (1998). Turkish Journal of Botany, 22, 13–17.

    Google Scholar 

  15. Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Renewable and Sustainable Energy Reviews, 14, 217–232.

    Article  CAS  Google Scholar 

  16. Dominguez-Bocanegra, A. R., Guerrero Legarreta, I., Martinez Jeronimo, F., & Tomasini Campocosio, A. (2004). Bioresource Technology, 92, 209–214.

    Article  CAS  Google Scholar 

  17. Orosa, M., Franqueira, D., Cid, A., & Abalde, J. (2005). Bioresource Technology, 96, 373–378.

    Article  CAS  Google Scholar 

  18. Wang, Y., & Peng, J. (2008). World Journal of Microbiology and Biotechnology, 24, 1915–1922.

    Article  CAS  Google Scholar 

  19. Ak, I. (2011). Turkish Journal of Fisheries and Aquatic Sciences, 11, 377–383.

    Google Scholar 

  20. Shi, X. M., Zhang, X. W., & Chen, F. (2000). Enzyme and Microbial Technology, 27, 312–318.

    Article  CAS  Google Scholar 

  21. MacIntyre, H. L., Cullen, J. J. (2005) Culturing techniques. Burlington, MA: Academic, 287–326.

  22. Ip, P. F., Wong, K. H., & Chen, F. (2004). Process Biochemistry, 39, 1761–1766.

    Article  CAS  Google Scholar 

  23. Vidhyavathi, R., Venkatachalam, L., Sarada, R., & Ravishankar, G. A. (2008). Journal of Experimental Botany, 59, 1409–1418.

    Article  CAS  Google Scholar 

  24. Huang, J. C., Wang, Y., Sandmann, G., & Chen, F. (2006). Applied Microbiology and Biotechnology, 71, 473–479.

    Article  CAS  Google Scholar 

  25. Wang, Y., & Chen, T. (2008). World Journal of Microbiology and Biotechnology, 24, 2927–2932.

    Article  CAS  Google Scholar 

  26. Kobayashi, M., Kurimura, Y., Sakamoto, Y., & Tsuji, Y. (1997). Biotechnology Techniques, 11, 657–660.

    Article  CAS  Google Scholar 

  27. Perez-Garcia, O., Escalante, F. M., de-Bashan, L. E., & Bashan, Y. (2011). Water Research, 45, 11–36.

    Article  CAS  Google Scholar 

  28. Jeon, Y. C., Cho, C. W., & Yun, Y. S. (2006). Enzyme and Microbial Technology, 39, 490–495.

    Article  CAS  Google Scholar 

  29. Borowitzka, M., Huisman, J., & Osborn, A. (1991). Journal of Applied Phycology, 3, 295–304.

    Article  CAS  Google Scholar 

  30. Pelah, D., Sintov, A., & Cohen, E. (2004). World Journal of Microbiology and Biotechnology, 20, 483–486.

    Article  CAS  Google Scholar 

  31. Barsanti, L., Gualtieri, P. (2005) Algae: anatomy, biochemistry, and biotechnology. Boca Raton, FL: CRC

  32. Sarada, R., Tripathi, U., & Ravishankar, G. A. (2002). Process Biochemistry, 37, 623–627.

    Article  CAS  Google Scholar 

  33. Ramirez, J., Gutierrez, H., & Gschaedler, A. (2001). Journal of Biotechnology, 88, 259–268.

    Article  CAS  Google Scholar 

  34. Harker, M., Tsavalos, A., & Young, A. (1995). Journal of Applied Phycology, 7, 399–406.

    Article  Google Scholar 

  35. Anderson, M. J., Whitcomb, P. J. (2005) Response surface methods simplified. New York: Productivity

Download references

Acknowledgments

The authors would like to thank the Faculty of Biosciences and Medical Engineering of Universiti Teknologi Malaysia for the moral and monetary support for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaza Eva Mohamad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Binti Ibnu Rasid, E.N., Mohamad, S.E., Jamaluddin, H. et al. Screening Factors Influencing the Production of Astaxanthin from Freshwater and Marine Microalgae. Appl Biochem Biotechnol 172, 2160–2174 (2014). https://doi.org/10.1007/s12010-013-0644-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0644-x

Keywords

Navigation