Skip to main content
Log in

Molecular Modeling and Docking Studies of O-Succinylbenzoate Synthase of M. tuberculosis—a Potential Target for Antituberculosis Drug Design

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Menaquinone is a lipid-soluble naphthoquinone that is essential for various pivotal functions of bacteria. Naphthoquinone is synthesized from chorismate of the shikimate pathway in microorganisms. Due to its absence in humans and animals, menaquinone biosynthesis has been an attractive target for development of antibiotics against a number of important microbial pathogens, such as Mycobacterium tuberculosis (Mtb). In shikimate pathway, O-succinylbenzoate synthase (OSBS) plays a major role and is one of the major potential drug targets. For Mtb-OSBS, a systematic study was conducted to get an insight about Mtb-OSBS enzyme and the corresponding inhibitors using in silico methods. The 3-D model of Mtb-OSBS was built using structure coordinates of Thermobifida fusca. O-succinylbenzoate synthase, the model, was further refined. The active site amino acids have been identified by comparing the template sequence with the Mtb-OSBS sequence. We identified that Lys108, Asn140, Asp138, Lys110, Glu189, Ser236, Asp188, Arg27, Tyr52, and Ser237 are highly conserved, and these may play a vital role as active residues, similar to that in template protein. As per the competitive binding of substrate (2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate (SHCHC)), we screened the SHCHC through AutoDock 4.0. The SHCHC molecule was further modified structurally and optimized through PRODRG server. Docking of the 12 lead molecules for best interactions with Mtb-OSBS has given an insight that all the lead molecules have shown interactions with active site amino acids of Mtb-OSBS. MD simulation analysis report has shown the stable conformation annotations of Mtb-OSBS. These hypothetical studies create another way to develop more potential drugs against the deadly mycobacterium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Babajan, B., Chaitanya, M., Rajsekhar, C., Gowsia, D., Madhusudhana, P., Naveen, M., et al. (2009). Interdisciplinary Sciences Computational Life Sciences, 3, 204–216.

    Article  Google Scholar 

  2. Aparna, V., Jeevan, J., Ravi, M., & Desiraju, G. R. (2005). Journal of Chemical Information and Modelling, 45, 1101–1108.

    Article  Google Scholar 

  3. Cole, S. T., Brosch, R., Parkhill, J., Churcher Harris, D. C., Gordon, S. V., Eiglmeier, K., et al. (1998). Nature, 393, 537–544.

    Article  CAS  Google Scholar 

  4. Michael, Y. G., & Eugene, V. K. (1999). Current Opinion in Biotechnology, 10(6), 571–578.

    Article  Google Scholar 

  5. Celia, W., Goulding, L., Jeanne, P., Daniel, A., Michael, R. S., Duilio, C., et al. (2003). Biophysical Chemistry, 105, 361–370.

    Article  Google Scholar 

  6. Meganathan, R. (1996). American Society for Microbiology, 2(1), 642–656.

    Google Scholar 

  7. Berkner, K. L. (2005). Annual Review of Nutrition, 25, 127–149.

    Article  CAS  Google Scholar 

  8. Dowd, P., Ham, S. W., Naganathan, S., & Hershline, R. (1995). Annual Review of Nutrition, 15, 419–440.

    Article  CAS  Google Scholar 

  9. Bügel, S. (2008). Vitamins & Hormones, 78, 393–416.

    Google Scholar 

  10. Shanahan, C. M., Proudfoot, D., Farzaneh-Far, A., & Weissberg, P. L. (1998). Gene Expression Patterns, 8, 357–375.

    CAS  Google Scholar 

  11. Bentley, R. (1990). Biochemistry and Molecular Biology, 25, 307–384.

    Article  CAS  Google Scholar 

  12. Suttie, J. W. (1995). Annual Review of Nutrition, 15, 399–417.

    Article  CAS  Google Scholar 

  13. Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R., & Thornton, J. M. (1996). Journal of Biomolecular NMR, 8, 477–486.

    Article  CAS  Google Scholar 

  14. Pisabarro, M. T., Ortiz, A. R., Serrano, L., & Wade, R. C. (1994). Proteins: Structure, Function, and Bioinformatics, 24, 203–215.

    Article  Google Scholar 

  15. Tomii, K., Hirokawa, T., & Motono, C. (2005). Proteins, 61, 114–121.

    Article  CAS  Google Scholar 

  16. Schuettelkopf, A. W., & van Aalten, D. M. F. (2004). Acta Crystallographica, 60, 1355–1363.

    Google Scholar 

  17. Wang, R., Gao, Y., & Lai, L. (2000). Journal of Molecular Modelling, 6, 498–516.

    Article  CAS  Google Scholar 

  18. Goodsell, D. S., & Morris, G. M. (1998). Journal of Computational Chemistry, 19, 1639–1662.

    Article  Google Scholar 

  19. Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Journal of Computational Chemistry, 19, 1639–1645.

    Article  CAS  Google Scholar 

  20. Michel, F., & Sanner. (1999). Journal of Mololecular Graphics and Modelling, 17, 57–61.

    Google Scholar 

  21. La Motta, C., Sartini, S., Mugnaini, L., Simorini, F., Taliani, S., Salerno, S., et al. (2007). Journal of Medicinal Chemistry, 50, 4917–4924.

    Article  Google Scholar 

  22. Hess, B., Bekker, H., Berendsen, H., & Fraaije, J. (1997). Journal of Computational Chemistry, 18, 1463–1472.

    Article  CAS  Google Scholar 

  23. Kanehisa, M., Goto, S., Kawashima, S., & Nakaya, A. (2002). Nucleic Acids Research, 30(1), 42–46.

    Article  CAS  Google Scholar 

  24. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Nucleic Acids Research, 25(17), 3389–3402.

    Article  CAS  Google Scholar 

  25. Madhusudana, P., Babajan, B., Chaitanya, M., Anuradha, C. M., Shobha Rani, C., Rajasekhar Chikati, et al. (2012). Interdisciplinary Sciences Computational Life Sciences, 4, 142–152.

    Article  CAS  Google Scholar 

  26. Laskowski, R. A., Chistyakov, V. V., & Thornton, J. M. (2005). Nucleic Acids Research, 33, 266–268.

    Article  Google Scholar 

  27. Maccari, R., Ottana, R., Ciurleo, R., Vigorita, M. G., Rakowitz, D., Steindl, T., et al. (2007). Bioorganic and Medicinal Chemistry Letters, 17, 3886–3894.

    Article  CAS  Google Scholar 

  28. Da Settimo, F., Primofiore, G., Da Settimo, A., La Motta, C., Taliani, S., Simorini, F., et al. (2001). Europian Journal of Medicinal Chemistry, 44, 4359–4369.

    Article  Google Scholar 

Download references

Acknowledgments

The Authors Thanks to University of Grant Commission (UGC, New Delhi) (No. 36-216/2008(SR)) India for providing financial assassinate to this work. The Authors also thanks to DBT, New Delhi (BT/BI/25/001/2006). Madhusudana P. thanks the Indian Council of Medicinal Research for providing SRF (no. 45/20/2011-BMS/BIF). Dr. B. Babajan thanks to UGC’s Dr. D.S. Kothari Post-Doctoral program for providing fellowship (No. F.4-2/2006 (BSR)/13-843/2013 (BSR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuradha C. M..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pulaganti, M., Banaganapalli, B., Mulakayala, C. et al. Molecular Modeling and Docking Studies of O-Succinylbenzoate Synthase of M. tuberculosis—a Potential Target for Antituberculosis Drug Design. Appl Biochem Biotechnol 172, 1407–1432 (2014). https://doi.org/10.1007/s12010-013-0569-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0569-4

Keywords

Navigation