Skip to main content

Advertisement

Log in

Siderophore Production by Bacillus megaterium: Effect of Growth Phase and Cultural Conditions

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Siderophore production by Bacillus megaterium was detected, in an iron-deficient culture medium, during the exponential growth phase, prior to the sporulation, in the presence of glucose; these results suggested that the onset of siderophore production did not require glucose depletion and was not related with the sporulation. The siderophore production by B. megaterium was affected by the carbon source used. The growth on glycerol promoted the very high siderophore production (1,182 μmol g−1 dry weight biomass); the opposite effect was observed in the presence of mannose (251 μmol g−1 dry weight biomass). The growth in the presence of fructose, galactose, glucose, lactose, maltose or sucrose, originated similar concentrations of siderophore (546–842 μmol g−1 dry weight biomass). Aeration had a positive effect on the production of siderophore. Incubation of B. megaterium under static conditions delayed and reduced the growth and the production of siderophore, compared with the incubation in stirred conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schmidt, C. K., Fleig, M., Sacher, F., & Brauch, H. E. (2004). Environmental Pollution, 131, 107–124.

    Article  CAS  Google Scholar 

  2. Knepper, T. P. (2003). Trac-Trends Anal. Chemical, 22, 708–724.

    CAS  Google Scholar 

  3. Nowack, B. and VanBriesen, J.M. (2005) Biogeochemistry of chelating agents, vol. 910. Nowack, B. and VanBriesen, J.M., (eds.). Washington DC: American Chemical Society, pp. 1–18

  4. Bucheli-Witschel, M., & Egli, T. (2001). FEMS Microbiol. Review, 25, 69–106.

    CAS  Google Scholar 

  5. Hider, R. C., & Kong, X. L. (2010). Natural Product Reports, 27, 637–657.

    Article  CAS  Google Scholar 

  6. Budzikiewicz, H. (2010) Iron uptake and homeostasis in microorganisms. Cornelis, P. and Andrews, S.C., (eds.). Wymondham: Caister Academic Press, pp. 1–16

  7. Carrano, C. J., Drechsel, H., Kaiser, D., Jung, G., Matzanke, B., Winkelmann, G., Rochel, N., & AlbrechtGary, A. M. (1996). Inorganic Chemistry, 35, 6429–6436.

    Article  CAS  Google Scholar 

  8. von Wiren, N., Khodr, H., & Hider, R. C. (2000). Plant Physiology, 124, 1149–1157.

    Article  Google Scholar 

  9. Martell, A.E. and Smith, R.M. (2004) Standard reference database 46 version 8.0. New York: National Institute of Standards and Technology (NIST), US Department of Commerce

  10. Warren, R. A. J., & Neilands, J. B. (1965). The Journal of Biological Chemistry, 240, 2055–2058.

    CAS  Google Scholar 

  11. Pierwola, A., Krupinski, T., Zalupski, P., Chiarelli, M., & Castignetti, D. (2004). Applied and Environmental Microbiology, 70, 831–836.

    Article  CAS  Google Scholar 

  12. Winkelmann, G., Busch, B., Hartmann, A., Kirchhof, G., Sussmuth, R., & Jung, G. (1999). Biometals, 12, 255–264.

    Article  CAS  Google Scholar 

  13. Yehuda, Z., Shenker, M., Hadar, Y., & Chen, Y. N. (2000). Journal of Plant Nutrition, 23, 1991–2006.

    Article  CAS  Google Scholar 

  14. Das, A., Prasad, R., Srivastava, A., Giang, P.H., Bhatnagar, K. and Varma, A. (2007) Microbial siderophores. Varma, A. and Chincholkar, S.B. (eds.). Berlin: Springer, pp. 1–42

  15. Nagoba, B., & Vedpathak, D. (2011). European of Journal General Medicine, 8, 229–235.

    Google Scholar 

  16. Miller, M. J. (1989). Chemical Reviews, 89, 1563–1579.

    Article  CAS  Google Scholar 

  17. Shenker, M., & Chen, Y. (2005). Soil Science & Plant Nutrition, 51, 1–17.

    Article  CAS  Google Scholar 

  18. Lankford, C. E., Walker, J. R., Reeves, J. B., Nabbut, N. H., Byers, B. R., & Jones, R. J. (1966). Journal of Bacteriology, 91, 1070–1079.

    CAS  Google Scholar 

  19. Arceneaux, J., Davis, W. B., Downer, D. N., Haydon, A. H., & Byers, B. R. (1973). Journal of Bacteriology, 115, 919–927.

    CAS  Google Scholar 

  20. Arceneaux, J. E. L., & Byers, B. R. (1976). Journal of Bacteriology, 127, 1324–1330.

    CAS  Google Scholar 

  21. Arceneaux, J. E. L., & Byers, B. R. (1980). Journal of Bacteriology, 141, 715–721.

    CAS  Google Scholar 

  22. Hu, X. C., & Boyer, G. L. (1995). Biometals, 8, 357–364.

    Article  CAS  Google Scholar 

  23. Mullis, K. B., Pollack, J. R., & Neilands, J. B. (1971). Biochemistry, 10, 4894–4898.

    Article  CAS  Google Scholar 

  24. Gaballa, A. and Helmann, J.D. (2010) Iron uptake and homeostasis in microorganisms. Cornelis, P. and Andrews, S.C., (eds.). Wymondham: Caister Academic Press, pp. 229–246.

  25. Hu, X. C., & Boyer, G. L. (1996). Applied and Environmental Microbiology, 62, 4044–4048.

    CAS  Google Scholar 

  26. Davis, W. B., McCauley, M. J., & Byers, B. R. (1971). Journal of Bacteriology, 105, 589–594.

    CAS  Google Scholar 

  27. Byers, B. R., Powell, M. V., & Lankford, C. E. (1967). Journal of Bacteriology, 93, 286–294.

    CAS  Google Scholar 

  28. Storey, E. P., Boghozian, R., Little, J. L., Lowman, D. W., & Chakraborty, R. (2006). Biometals, 19, 637–649.

    Article  CAS  Google Scholar 

  29. Nicolaisen, K., Moslavac, S., Samborski, A., Valdebenito, M., Hantke, K., Maldener, I., Muro-Pastor, A. M., Flores, E., & Schleiff, E. (2008). Journal of Bacteriology, 190, 7500–7507.

    Article  CAS  Google Scholar 

  30. Sonier, M. B., Contreras, D. A., Treble, R. G., & Weger, H. G. (2012). Botany-Botanique, 90, 181–190.

    Article  CAS  Google Scholar 

  31. Alexander, D. B., & Zuberer, D. A. (1991). Biology and Fertility of Soils, 12, 39–45.

    Article  CAS  Google Scholar 

  32. Schwyn, B., & Neilands, J. B. (1987). Analytical Biochemistry, 160, 47–56.

    Article  CAS  Google Scholar 

  33. Chaplin, M.F. (1986) Carbohydrate analysis—a practical approach. Chaplin, M.F. and Kennedy, J.F. (eds.). Washington DC: IRL Press. pp. 1–36

  34. Schalk, I. J., Hannauer, M., & Braud, A. (2011). Environmental Microbiology, 13, 2844–2854.

    Article  CAS  Google Scholar 

  35. Villegas, M.E.D. (2007) Microbial siderophores, vol. 12. Varma, A. and Chincholkar, S.B. (eds.). Berlin: Springer. pp. 219–231

  36. Vary, P. S., Biedendieck, R., Fuerch, T., Meinhardt, F., Rohde, M., Deckwer, W. D., & Jahn, D. (2007). Applied Microbiology and Biotechnology, 76, 957–967.

    Article  CAS  Google Scholar 

  37. Schaeffer, P. (1969). Bacteriological Reviews, 33, 48–71.

    CAS  Google Scholar 

  38. Schallmey, M., Singh, A., & Ward, O. P. (2004). Canadian Journal of Microbiology, 50, 1–17.

    Article  CAS  Google Scholar 

  39. Martin, J. F., & Demain, A. L. (1980). Microbiological Reviews, 44, 230–251.

    CAS  Google Scholar 

  40. Ruiz, B., Chavez, A., Forero, A., Garcia-Huante, Y., Romero, A., Sanchez, M., Rocha, D., Sanchez, B., Rodriguez-Sanoja, R., Sanchez, S., & Langley, E. (2010). Critical Reviews in Microbiology, 36, 146–167.

    Article  CAS  Google Scholar 

  41. Tschierske, M., Drechsel, H., Jung, G., & Zahner, H. (1996). Applied Microbiology and Biotechnology, 45, 664–670.

    Article  CAS  Google Scholar 

  42. Wilson, M. K., Abergel, R. J., Arceneaux, J. E. L., Raymond, K. N., & Byers, B. R. (2010). Biometals, 23, 129–134.

    Article  CAS  Google Scholar 

  43. Chincholkar, S.B., Chaudhari, B.L. and Rane, M.R. (2007) Microbial siderophores, vol. 12. Varma, A. and Chincholkar, S.B. (eds.). Berlin: Springer, pp. 233–242

  44. Duffy, B. K., & Defago, G. (1999). Applied and Environmental Microbiology, 65, 2429–2438.

    CAS  Google Scholar 

  45. Stulke, J., & Hillen, W. (2000). Annual Review of Microbiology, 54, 849–880.

    Article  CAS  Google Scholar 

  46. Gupta, N., Mehra, G., & Gupta, R. (2004). Canadian Journal of Microbiology, 50, 361–368.

    Article  CAS  Google Scholar 

  47. Ayoub, M., & Abdullah, A. Z. (2012). Renewable and Sustainable Energy Reviews, 16, 2671–2686.

    Article  CAS  Google Scholar 

  48. Guimaraes, P. M. R., Teixeira, J. A., & Domingues, L. (2010). Biotechnology Advances, 28, 375–384.

    Article  CAS  Google Scholar 

  49. Chisti, Y. and Moo-Young, M. (2001) Basic biotechnology: 2nd ed. Ratledge, C. and Kristiansen, B. (eds.). Cambridge: Cambridge University Press. pp. 151–171

Download references

Acknowledgments

The authors thank Porto University/Totta Bank for their financial support through the project “Microbiological production of chelating agents” (Ref: 180). The authors also thank the Fundação para a Ciência e a Tecnologia (FCT) through the Portuguese Government for their financial support of this work through the grants Strategic project-LA23/2013-2014 (IBB) and PEST-C/EQB/LA0006/2011 (REQUIMTE). Manuela D. Machado gratefully acknowledges the postdoctoral (SFRH/BPD/72816/2010) grant from FCT.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Helena M. V. M. Soares or Eduardo V. Soares.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, S., Neto, I.F.F., Machado, M.D. et al. Siderophore Production by Bacillus megaterium: Effect of Growth Phase and Cultural Conditions. Appl Biochem Biotechnol 172, 549–560 (2014). https://doi.org/10.1007/s12010-013-0562-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0562-y

Keywords

Navigation