Skip to main content
Log in

Population Analysis of Mesophilic Microbial Fuel Cells Fed with Carbon Monoxide

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Electricity generation in a microbial fuel cell (MFC) fed with carbon monoxide (CO) has been recently demonstrated; however, the microbial ecology of this system has not yet been described. In this work the diversity of the microbial community present at the anode of CO-fed MFCs was studied by performing denaturing gradient gel electrophoresis (DGGE) and high-throughput sequencing (HTS) analyses. HTS indicated a significant increase of the archaeal genus Methanobacterium and of the bacterial order Clostridiales, notably including Clostridium species, while in both MFCs DGGE identified members of the bacterial genera Geobacter, Desulfovibrio, and Clostridium, and of the archaeal genera Methanobacterium, Methanofollis, and Methanosaeta. In particular, the presence of Geobacter sulfurreducens was identified. Tolerance of G. sulfurreducens to CO was confirmed by growing G. sulfurreducens with acetate under a 100 % CO atmosphere. This observation, along with the identification of acetogens, supports the hypothesis of the two-step process in which CO is converted to acetate by the carboxidotrophic Bacteria and acetate is then oxidized by CO-tolerant electricigenic Bacteria to produce electricity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klasson, K., Ackerson, C., Clausen, E., & Gaddy, J. (1992). International Journal of Hydrogen Energy, 17, 281–288.

    Article  CAS  Google Scholar 

  2. Song, C. (2002). Catalysis today, 77, 17–49.

    Article  CAS  Google Scholar 

  3. Hussain, A., Guiot, S. R., Mehta, P., Raghavan, V., & Tartakovsky, B. (2011). Applied Microbiology and Biotechnology, 90, 827–836.

    Article  CAS  Google Scholar 

  4. Kim, D., & Chang, I. (2009). Bioresource Technology, 100, 4527–4530.

    Article  CAS  Google Scholar 

  5. Mehta, P., Hussain, A., Raghavan, V., Neburchilov, V., Wang, H., & Tartakovsky, B. (2010). Enzyme and Microbial Technology, 46, 450–455.

    Article  CAS  Google Scholar 

  6. Hussain, A., Tartakovsky, B., Guiot, S. R., & Raghavan, V. (2011). Bioresource Technology, 102, 10898–10906.

    Article  CAS  Google Scholar 

  7. Neburchilov, V., Mehta, P., Hussain, A., Wang, H., Guiot, S. R., & Tartakovsky, B. (2011). International Journal of Hydrogen Energy, 36, 11929–11935.

    Article  CAS  Google Scholar 

  8. Lovley, D. R. (2006). Current Opinions in Biotechnology, 17, 327–332.

    Article  CAS  Google Scholar 

  9. Tartakovsky, B., Manuel, M. F., Neburchilov, V., Wang, H., & Guiot, S. R. (2008). Journal of Power Sources, 182, 291–297.

    Article  CAS  Google Scholar 

  10. Guiot, S. R., Cimpoia, R., & Carayon, G. (2011). Environmental Science and Technology, 45, 2006–2012.

    Article  CAS  Google Scholar 

  11. Tartakovsky, B., Manuel, M. F., Beaumier, D., Greer, C. W., & Guiot, S. R. (2001). Biotechnology and Bioengineering, 73, 476–483.

    Google Scholar 

  12. Baker, G. C., Smith, J. J., & Cowan, D. A. (2003). Journal of Microbiological Methods, 55, 541–555.

    Article  CAS  Google Scholar 

  13. Galand, P. E., Casamayor, E. O., Kirchman, D. L., Potvin, M., & Lovejoy, C. (2009). The ISME Journal, 3, 860–869.

    Article  CAS  Google Scholar 

  14. Wang, Q., Garrity, M., Tiedje, J., & Cole, J. (2007). Applied and Environmental Microbiology, 73, 5261–5267.

    Article  CAS  Google Scholar 

  15. Claesson, M. J., O’Sullivan, O., Wang, Q., Nikkilä, J., Marchesi, J. R., Smidt, H., et al. (2009). PLoS ONE, 4, e6669.

    Article  Google Scholar 

  16. Logan, B. (2008). Microbial fuel cells. Hoboken: Wiley.

    Google Scholar 

  17. Bond, D. R., & Lovley, D. R. (2003). Applied and Environmental Microbiology, 69, 1548–1555.

    Article  CAS  Google Scholar 

  18. Ragsdale, S. W. (2004). Critical Reviews in Biochemistry and Molecular Biology, 39, 165–195.

    Article  CAS  Google Scholar 

  19. Methe, B. A., Nelson, K. E., Eisen, J. A., Paulsen, I. T., Nelson, W., Heidelberg, J. F., et al. (2003). Science, 302, 1967–1969.

    Article  CAS  Google Scholar 

  20. Preez, L., & Maree, J. (1994). Water science and technology, 30, 275–285.

    CAS  Google Scholar 

  21. Houten, B., Meulepas, R., Doesburg, W., Smidt, H., Muyzer, G., & Stams, A. (2009). International Journal of Systematic and Evolutionary Microbiology, 59, 229–233.

    Article  Google Scholar 

  22. Brandis, A., & Thauer, R. K. (1981). Journal of General Microbiology, 126, 249–252.

    CAS  Google Scholar 

  23. Bernalier, A., Willems, A., Leclerc, M., Rochet, V., & Collins, M. D. (1996). Archives of Microbiology, 166, 176–183.

    Article  CAS  Google Scholar 

  24. Lens, P., Vallerol, M., Esposito, G., & Zandvoort, M. (2002). Reviews in Environmental Science and Bio/Technology, 1, 311–325.

    Article  CAS  Google Scholar 

  25. Sipma, J., Henstra, A. M., Parshina, S. N., Lens, P. N. L., Lettinga, G., & Stams, A. J. M. (2006). Critical Reviews in Biotechnology, 26, 41–65.

    Article  CAS  Google Scholar 

  26. Houten, B., Roest, K., Tzeneva, V., Dijkman, H., Smidt, H., & Stams, A. (2006). Water Research, 40, 553–560.

    Article  Google Scholar 

  27. Imachi, H., Aoi, K., Tasumi, E., Saito, Y., Yamanaka, Y., Saito, Y., et al. (2011). The ISME Journal, 1, 1–13.

    Google Scholar 

  28. Wu, W.-M., Hickey, R. F., Jain, M. K., & Zeikus, J. G. (1993). Archives of Microbiology, 159, 57–65.

    Article  CAS  Google Scholar 

  29. Klasson, K. T., Cowger, J. P., Ko, C. W., Vega, J. L., Clausen, E. C., & Gaddy, J. L. (1990). Applied Biochemistry and Biotechnology, 24–25, 317–328.

    Article  Google Scholar 

  30. Patel, G. B., & Sprott, G. D. (1990). International Journal of Systematic Bacteriology, 40, 79–82.

    Article  Google Scholar 

  31. Parshina, S. N., Sipma, J., Henstra, A. M., & Stams, A. J. M. (2010). International Journal of Microbiology, 25, 1–9.

    Article  Google Scholar 

  32. Parshina, S. N., Sipma, J., Nakashimada, Y., Henstra, A. M., Smidt, H., Lysenko, A. M., et al. (2005). International Journal of Systematic and Evolutionary Microbiology, 55, 2159–2165.

    Article  CAS  Google Scholar 

  33. Du, Z., Li, H. & Gu, T. Biotechnology Advances, 25, 464–482.

  34. Fonknechten, N., Chaussonnerie, S., Tricot, S., Lajus, A., Andreesen, J., Perchat, N., et al. (2010). BMC Genomics, 11, 555.

    Article  Google Scholar 

  35. Oelgeschlager, E., & Rother, M. (2008). Archives of Microbiology, 190, 257–269.

    Article  Google Scholar 

  36. Rabaey, K., & Verstraete, W. (2005). Trends in Biotechnology, 23, 291–298.

    Article  CAS  Google Scholar 

  37. Park, H. S., Kim, B. H., Kim, H. S., Kim, H. J., Kim, G. T., Kim, M., et al. (2001). Anaerobe, 7, 297–306.

    Article  CAS  Google Scholar 

  38. Hawkes, F. R., Dinsdale, R., Hawkes, D. L., & Hussy, I. (2002). International Journal of Hydrogen Energy, 27, 1339–1347.

    Article  CAS  Google Scholar 

  39. Kotay, S. M., & Das, D. (2008). International Journal of Hydrogen Energy, 33, 258–263.

    Article  Google Scholar 

  40. Logan, B. E. (2009). Nature Reviews Microbiology, 7, 375–381.

    Article  CAS  Google Scholar 

  41. Lovley, D. R. (1993). Annual Review of Microbiology, 47, 263–290.

    Article  CAS  Google Scholar 

  42. Kim, J. R., Min, B., & Logan, B. E. (2005). Applied Microbiology and Biotechnology, 68, 23–30.

    Article  CAS  Google Scholar 

  43. Michaelidou, U., ter Heijne, A., Euverink, G. J. W., Hamelers, H. V. M., Stams, A. J. M., & Geelhoed, J. S. (2011). Applied and Environmental Microbiology, 77, 1069–1075.

    Article  CAS  Google Scholar 

  44. Jung, S., & Regan, J. (2007). Applied Microbiology and Biotechnology, 77, 393–402.

    Article  CAS  Google Scholar 

  45. Lefebvre, O., Ha Nguyen, T. T., Al-Mamun, A., Chang, I. S., & Ng, H. Y. (2010). Journal of Applied Microbiology, 109, 839–850.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Research Council of Canada (NRC publication no. 53232), the ecoENERGY Technology Initiative of the Office of Energy Research and Development (OERD) of Natural Resources Canada (project I12.011) and the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support. The authors also wish to thank C.W. Greer for his enlightening comments on the HTS results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Guiot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hussain, A., Bruant, G., Mehta, P. et al. Population Analysis of Mesophilic Microbial Fuel Cells Fed with Carbon Monoxide. Appl Biochem Biotechnol 172, 713–726 (2014). https://doi.org/10.1007/s12010-013-0556-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0556-9

Keywords

Navigation