Skip to main content

Advertisement

Log in

Enhancing the performance of an acetate-fed microbial fuel cell with methylene green

  • Original Paper
  • Published:
Brazilian Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Microbial fuel cells are an eco-friendly technology that decontaminate wastewater and generate electricity by the action of exoelectrogenic microbes. However, mechanisms such as bioanode formation and stabilization and the electron transfer mechanism still have to be elucidated and enhanced before this technology can be scaled up for practical applications. Electrochemical characterization showed that a more electroactive biofilm (power density of 77 ± 8 mW m−2) emerged under a charged surface provided by a continuously applied electric current. Among the different molecules evaluated as electron transfer mediator, methylene green was the only molecule that improved cell performance. Methylene green addition increased the cell voltage by 20% and maintained the cell stable for six more days as compared to the control. Bioanode microbial community analysis revealed a high abundance of Arcobacter and Dechloromonas, which may play roles in electricity generation and methylene green discoloration. Microbial fuel cell voltage and stability were increased upon addition of methylene green, which was degraded in the bioanode over time. Identification of microbial members helps to understand MFC performance and to elucidate how methylene green improves MFC stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

Yes.

Code availability

Not applicable.

References

  • Bosire EM, Blank LM, Rosenbaum MA (2016) Strain and substrate-dependent redox mediator and electricity production by Pseudomonas aeruginosa. Appl Environ Microbiol 82(16):5026–5038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty R, O’Connor SM, Chan E, Coates JD (2005) Anaerobic degradation of benzene, toluene, ethylbenzene, and xylene compounds by Dechloromonas strain RCB. Appl Environ Microbiol 71(12):8649–8655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C-Y, Tsai T-H, Wu P-S, Tsao S-E, Huang Y-S, Chung Y-C (2018) Selection of electrogenic bacteria for microbial fuel cell in removing Victoria blue R from wastewater. J Environ Sci Health 53(2):108–115

    Article  CAS  Google Scholar 

  • Demirel B, Yenigun O, Onay TT (2005) Anaerobic treatment of dairy wastewaters: a review. Process Biochem 40(8):2583–2595

    Article  CAS  Google Scholar 

  • Do MH, Ngo HH, Guo WS, Liu Y, Chang SW, Nguyen DD, Nghiem LD, Ni BJ (2018) Challenges in the application of microbial fuel cells to wastewater treatment and energy production: a mini review. Sci Total Environ 639:910–920

    Article  CAS  PubMed  Google Scholar 

  • Dos Passos VF, Marcilio R, Aquino-Neto S, Santana FB, Dias ACF, Andreote FD, De Andrade AR, Reginatto V (2019) Hydrogen and electrical energy co-generation by a cooperative fermentation system comprising Clostridium and microbial fuel cell inoculated with port drainage sediment. Bioresour Technol 277:94–103

    Article  PubMed  CAS  Google Scholar 

  • Estevez-Canales M, Pinto D, Coradin T, Laberty-Robert C, Esteve-Núñez A (2018) Silica immobilization of Geobacter sulfurreducens for constructing ready-to-use artificial bioelectrodes. Microbial Biotechnol 11(1):39–49

    Article  CAS  Google Scholar 

  • Fedorovich V, Knighton MC, Pagaling E, Ward FB, Free A, Goryanin I (2009) Novel electrochemically active bacterium phylogenetically related to Arcobacter butzleri, isolated from a microbial fuel cell. Appl Environ Microbiol 75(23):7326–7334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fricke K, Harnisch F, Schröder U (2018) On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells. Energy Environ Sci 1(1):144–147

    Article  CAS  Google Scholar 

  • Galai S, De Los Ríos AP, Hernández-Fernández FJ, Kacem SH, Ramírez FM, Quesada-Medina J (2015) Microbial fuel cell application for azoic dye decolorization with simultaneous bioenergy production using Stenotrophomonas sp. Chem Eng Technol 38(9):1511–1518

    Article  CAS  Google Scholar 

  • Glasser NR, Saunders SH, Newman DK (2017) The colorful world of extracellular electron shuttles. Annu Rev Microbiol 71(1):731–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan SDM, Giongo C, Fiorese ML, Gomes SD, Ferrari TC, Savoldi TE (2015) Volatile fatty acids production from anaerobic treatment of cassava waste water: effect of temperature and alkalinity. Environ Technol 36(20):2637–2546

    Article  CAS  PubMed  Google Scholar 

  • Hofbauer S, Schaffner I, Furtmüller PG, Obinger C (2014) Chlorite dismutases-a heme enzyme family for use in bioremediation and generation of molecular oxygen. Biotechnol J 9:461–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keith S, Yu EH (eds) (2015) Microbial electrochemical and fuel cells: fundamentals and applications, 1st edn. Woodhead Publishing, Sawston

    Google Scholar 

  • Khater DZ, El-khatib KM, Hassan RYA (2018) Exploring the bioelectrochemical characteristics of activated sludge using cyclic voltammetry. Appl Biochem Biotechnol 184(1):92–101

    Article  CAS  PubMed  Google Scholar 

  • Kiely PD, Call DF, Yates MD, Regan JM, Logan BE (2010) Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera. Appl Microbiol Biotechnol 88(1):371–380

    Article  CAS  PubMed  Google Scholar 

  • Kim JR, Min B, Logan BE (2005) Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl Microbiol Biotechnol 68(1):23–30

    Article  CAS  PubMed  Google Scholar 

  • Lee WS, Chua ASM, Yeoh HK, Ngoh GC (2014) A review of the production and applications of waste-derived volatile fatty acids. Chem Eng J 235:83–99

    Article  CAS  Google Scholar 

  • Liu Z, Chen J, Chen S, Huang L, Shao Z (2017) Modeling and control of cathode air humidity for pem fuel cell systems. IFAC-PapersOnLine 50(1):4751–4756

    Article  Google Scholar 

  • Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7(5):375–381

    Article  CAS  PubMed  Google Scholar 

  • Logan BE, Regan JM (2006) Microbial fuel cells: challenges and applications. Environ Sci Technol 40:5172–5180

    Article  CAS  PubMed  Google Scholar 

  • Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(17):5181–5192

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR (2006) Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol 4:497–508

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR (2011) Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. Energy Environ Sci 4(12):4896–4906

    Article  CAS  Google Scholar 

  • Lovley DR, Philips EJ (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 4(6):1472–1480

    Article  Google Scholar 

  • MacArthur CG (1916) J Phys Chem 20(6):495–502

    Article  CAS  Google Scholar 

  • Malvankar NS, Lovley DR (2012) Microbial Nanowires: a new paradigm for biological electron transfer and bioelectronics. Chem Sus Chem 5(6):1039–1046

    Article  CAS  Google Scholar 

  • Mathuriya AS, Yakhmi JV (2016) Microbial fuel cells—applications for generation of electrical power and beyond. Crit Rev Microbiol 42(1):127–143

    Article  CAS  PubMed  Google Scholar 

  • Mei X, Guo C, Liu B, Tang Y, Xing D (2015) Shaping of bacterial community structure in microbial fuel cells by different inocula. RSC Adv 5(95):78136–78141

    Article  CAS  Google Scholar 

  • Mo Y, Liang P, Huang X, Wang H, Cao X (2009) Enhancing the stability of power generation of single-chamber microbial fuel cells using an anion exchange membrane. J Chem Technol Biotechnol 84(12):1767–1772

    Article  CAS  Google Scholar 

  • Nimje VR, Chen C-Y, Chen C-C, Chen H-R, Tseng M-J, Jean J-S, Chang Y-F (2011) Glycerol degradation in single-chamber microbial fuel cells. Bioresour Technol 102(3):2629–2634

    Article  CAS  PubMed  Google Scholar 

  • Penteado ED, Fernandez-Marchante CM, Zaiat M, Cañizares P, Gonzalez ER, Rodrigo MA (2016) Energy recovery from winery wastewater using a dual chamber microbial fuel cell. J Chem Technol Biotechnol 91(6):1802–1808

    Article  CAS  Google Scholar 

  • Pereira-Medrano AG, Knighton M, Fowler GJS, Ler ZY, Pham TK, Ow SY, Free A, Ward B, Wright PC (2013) Quantitative proteomic analysis of the exoelectrogenic bacterium Arcobacter butzleri ED-1 reveals increased abundance of a flagellin protein under anaerobic growth on an insoluble electrode. J Proteom 78:197–210

    Article  CAS  Google Scholar 

  • Pham TH, Rabaey K, Aelterman P, Clauwaert P, De Schamphelaire L, Boon N, Verstraete W (2006) Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng Life Sci 3:285–292

    Article  Google Scholar 

  • Pham TH, Boon N, Aelterman P, Clauwaert P, De Schamphelaire L, Vanhaecke L, De Maeyer K, Höfte M, Verstraete W, Rabaey K (2008) Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer. Appl Microbiol Biotechnol 77(5):1119–1129

    Article  CAS  PubMed  Google Scholar 

  • Phung NT, Lee J, Kang KH, Chang IS, Gadd GM, Kim BH (2004) Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rDNA sequences. FEMS Microbiol Lett 233:77–82

    Article  CAS  PubMed  Google Scholar 

  • Pirbadian S, Barchinger SE, Leung KM, Byun HS, Jangir Y, Bouhenni RA, Reed SM, Romine MF, Saffarini DA, Shi L, Gorby YA, Golbeck JH, El-Naggar MY (2014) Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc Natl Acad Sci 111(35):12883–12888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popov AL, Kim JR, Dinsdale RM, Esteves SR, Guwy AJ, Premier GC (2012) The effect of physico-chemically immobilized methylene blue and neutral red on the anode of microbial fuel cell. Biotechnol Bioprocess Eng 17(2):361–370

    Article  CAS  Google Scholar 

  • Qiao Y-J, Qiao Y, Zou L, Wu X-S, Liu J-H (2017) Biofilm promoted current generation of Pseudomonas aeruginosa microbial fuel cell via improving the interfacial redox reaction of phenazines. Bioelectrochemistry 117:34–39

    Article  CAS  PubMed  Google Scholar 

  • Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70(9):5373–5382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rago L, Cristiani P, Villa F, Zecchin S, Colombo A, Cavalca L, Schievano A (2017) Influences of dissolved oxygen concentration on biocathodic microbial communities in microbial fuel cells. Bioelectrochemistry 116:39–51

    Article  CAS  PubMed  Google Scholar 

  • Ribot-Llobet E, Montpart N, Ruiz-Franco Y, Rago L, Lafuente J, Baeza JA, Guisasola A (2014) Obtaining microbial communities with exoelectrogenic activity from anaerobic sludge using a simplified procedure. J Chem Technol Biotechnol 89(11):1727–1732

    Article  CAS  Google Scholar 

  • Rivière D, Desvignes V, Pelletier E, Chaussonnerie S, Guermazi S, Weissenbach J, Li T, Camacho P, Sghir A (2009) Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J 3:700–708

    Article  PubMed  Google Scholar 

  • Santoro C, Arbizzani C, Erable B, Ieropoulos I (2017) Microbial fuel cells: from fundamentals to applications: a review. J Power Sources 356:225–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schröder U (2007) Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9(21):2619–2629

    Article  PubMed  Google Scholar 

  • Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere.” Proc Natl Acad Sci 103(32):12115–12120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sure S, Ackland ML, Torriero AAJ, Adholeya A, Kochar M (2016) Microbial nanowires: an electrifying tale. Microbiology 62(12):2017–2028

    Article  CAS  Google Scholar 

  • Tang YJ, Meadows AL, Keasling JD (2007) A kinetic model describing Shewanella oneidensis MR-1 growth, substrate consumption, and product secretion. Biotechnol Bioeng 96(1):125–133

    Article  CAS  PubMed  Google Scholar 

  • Tkach O, Sangeetha T, Maria S, Wang A (2017) Performance of low temperature Microbial Fuel Cells (MFCs) catalyzed by mixed bacterial consortia. J Environ Sci 52:284–292

    Article  CAS  Google Scholar 

  • Toh H, Sharma VK, Oshima K, Kondo S, Hattori M, Ward FB (2011) Complete genome sequences of Arcobacter butzleri ED-1 and Arcobacter sp. strain L, both isolated from a microbial fuel cell. J Bacteriol 193(22):6411–6412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Feng Y, Ren N, Wang H, Lee H, Li N, Zhao Q (2009) Accelerated start-up of two-chambered microbial fuel cells: effect of anodic positive poised potential. Electrochim Acta 54(3):1109–1114

    Article  CAS  Google Scholar 

  • Willems A (2014) The family comamonadaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes: alphaproteobacteria and betaproteobacteria, vol 4. Springer, Berlin, pp 777–851

    Chapter  Google Scholar 

  • Xinyuan L, Zeyu H, Jie Y, Tianyi Y, Fang Y, Nan W, Bao Z (2018) Review of enhanced processes for anaerobic digestion treatment of sewage sludge. IOP Conf Ser Earth Environ Sci 113(1):12–39

    Google Scholar 

  • Xu S, Liu H (2011) New exoelectrogen Citrobacter sp. SX-1 isolated from a microbial fuel cell. J Appl Microbiol 111(5):1108–1115

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, Shin H, Kang C, Kim S (2016) Wiring microbial biofilms to the electrode by osmium redox polymer for the performance enhancement of microbial fuel cells. Bioelectrochemistry 108:8–12

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Yan B, Wong JWC, Zhang Y (2018) Enhanced volatile fatty acids production from anaerobic fermentation of food waste: a mini-review focusing on acidogenic metabolic pathways. Bioresour Technol 248:68–78

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was partially funded by FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo)—Research Grant 2018/12471-1 and 2014/50945-4 and Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (305085/2014-0, 465571/2014-0 and 303817/2019-4).

Author information

Authors and Affiliations

Authors

Contributions

RM and BMR have carried out MFC operation and chemical analysis. VR, and SAN conceived of the project and wrote the final manuscript. ARA helped by electrochemical analysis and discussion. FDA conducted the MiSeq library preparations and provided bioinformatics support. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Valeria Reginatto.

Ethics declarations

Conflict of interest

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcílio, R., Neto, S.A., Ruvieri, B.M. et al. Enhancing the performance of an acetate-fed microbial fuel cell with methylene green. Braz. J. Chem. Eng. 38, 471–484 (2021). https://doi.org/10.1007/s43153-021-00130-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43153-021-00130-5

Keywords

Navigation