Skip to main content
Log in

Kinetic Modeling of Ethanol Production by Scheffersomyces stipitis from Xylose

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This work focuses on the kinetics of ethanol production by Scheffersomyces stipitis on xylose with the development of a mathematical model considering the effect of substrate and product concentrations on growth rate. Experiments were carried out in batch and continuous modes, with substrate concentration varying from 7.2 to 145 g L−1. Inhibitory effects on cell growth, substrate uptake, and ethanol production rates were found to be considerable. Kinetic parameters were obtained through linear and non-linear regression methods. Experiments in continuous mode were performed at different dilution rates to evaluate the inhibitory effect of ethanol. A mixed mathematical model which combined Andrews and Levenspiel's models, combining substrate and product inhibition, was used. A quasi-Newton routine was applied to obtain a more accurate fitting of kinetic parameters. The parameters such as cell to product factor (Y P/X) and limiting cell yield (Y X) were shown to be dependent on substrate concentration. The kinetic model fitted satisfactorily the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AA:

Acetic acid concentration (g L−1)

K I :

Substrate inhibition coefficient (g L−1)

K S :

Substrate saturation parameter (g L−1)

m X :

Maintenance coefficient (g g−1 h−1)

n :

Parameter describing product inhibition

P :

Product concentration (g L−1)

P f :

Final ethanol concentration (g L−1)

P max :

Maximal product concentration when cell growth ceases (g L−1)

S :

Substrate concentration (g L−1)

S 0 :

Initial substrate concentration (g L−1)

S f :

Final substrate concentration (g L−1)

S*:

Substrate concentration at which the measured specific growth rate is maximum (g L−1)

X :

Biomass concentration (g L−1)

Xy:

Xylitol concentration (g L−1)

Xyf :

Final xylitol concentration (g L−1)

t T :

Fermentation total time (h)

X 0 :

Initial biomass concentration (g L−1)

X f :

Final biomass concentration (g L−1)

D :

Dilution rate (h−1)

r P :

Ethanol production rate (g L−1 h−1)

r S :

Substrate uptake rate (g L−1 h−1)

r X :

Cell growth rate (g L−1 h−1)

Y P/X :

Cell to product conversion factor (g g−1)

Y X :

Limiting cell yield (g g−1)

Y X/S :

Biomass yield (g g−1)

Y P/S :

Ethanol yield (g g−1)

μ max :

Maximum specific growth rate as described by Monod's model (h−1)

\( {\mu}_{{}_{\max}}^{\ast } \) :

The maximum specific growth rate related to each initial substrate concentration (h−1)

μ X :

Specific growth rate (h−1)

μ S :

Specific substrate uptake rate (h−1)

μ P :

Specific ethanol production rate (h−1)

References

  1. Ghaly, A. E., & El-Taweel, A. A. (1997). Kinetic modelling of continuos production of ethanol from cheese whey. Biomass and Bioenergy, 12(6), 461–472.

    Article  CAS  Google Scholar 

  2. Prior, B. A., Kilian, S. G., & du Preez, J. C. (1989). Fermentation of d-xylose by the yeasts Candida shehatae and Pichia stipitis: prospects and problems. Process Biochemistry, 21–32.

  3. Krishnan, M. S., Blanco, M., Shattuck, C. K., Nghiem, N. P., & Davison, B. H. (2000). Ethanol production from glucose and xylose by immobilized Zymomonas mobilis CP4(pZB5). Applied Biochemistry and Biotechnology, 86, 525–541.

    Article  Google Scholar 

  4. Fu, N., Peiris, P., Markham, J., & Bavor, J. (2009). A novel co-culture process with Zymomonas mobilis and Pichia stipitis for efficient ethanol production in glucose/xylose mixtures. Enzyme and Microbial Technology, 45, 210–217.

    Article  CAS  Google Scholar 

  5. Silva, J. P., Mussatto, S. I., Roberto, I. C., & Teixeira, J. A. (2012). Fermentation medium and oxygen transfer conditions that maximize the xylose conversion to ethanol by Pichia stipitis. Renewable Energy, 37, 259–265.

    Article  CAS  Google Scholar 

  6. Mussatto, S. I., & Roberto, I. C. (2004). Optimal experimental condition for hemicellulosic hydrolyzate treatment with activated charcoal for xylitol production. BiotechnologyProgress, 20, 134–139.

    CAS  Google Scholar 

  7. Nigam, N. (2001). Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. Journal of Biotechnology, 87, 17–27.

    Article  CAS  Google Scholar 

  8. Jeffries, T. W., & Van Vleet, J. R. H. (2009). Pichia stipitis genomics, transcriptomics, and gene clusters. FEMS Yeast Research, 9, 793–807.

    Article  CAS  Google Scholar 

  9. Laplace, J. M., Delgenes, J. P., Moletta, R., & Navarro, J. M. (1991). Combined alcoholic fermentation of d-xylose and d-glucose by four selected microbial strain: process considerations in relation to ethanol tolerance. Biotechnology Letters, 13, 445–450.

    Article  CAS  Google Scholar 

  10. Rouhollah, H., Iraj, N., Giti, E., & Sora, A. (2007). Mixed sugar fermentation by Pichia stipitis, Sacharomyces cerevisiae, and an isolated xylose fermenting Kluyveromyces marxianus and their co-cultures. African Journal of Biotechnology, 6, 1110–1114.

    CAS  Google Scholar 

  11. Pereira, F. B., Guimarães, P. M. R., Teixeira, J. A., & Domingues, L. (2010). Optimization of low cost medium for very high gravity ethanol fermentations by Saccharomyces cerevisiae using statistical experimental designs. Bioresource Technology, 101, 7856–7863.

    Article  CAS  Google Scholar 

  12. Delgenes, J. P., Moletta, R., & Navarro, J. M. (1988). The ethanol tolerance of Pichia stipitisY7124 grown on a d-xylose, d-glucose and l-arabinose mixture. Journal of Fermentation Technology, 66, 417–422.

    Article  CAS  Google Scholar 

  13. du Prezz, J. C., van Driessel, B., & Prior, B. A. (1989). The fermentation of d-xylose by Candida shehatae and Pichia stipitis at low dissolved oxygen level. Yeast, 5, 129–139.

    Google Scholar 

  14. Taniguchi, M., Tohma, T., Itaya, T., & Fuji, M. (1997). Ethanol production from a mixture of glucose and xylose by co-culture of Pichia stipitis and a respiratory-deficient mutant of Saccharomyces cerevisiae. Journal of Fermentation and Bioengineering, 83(84), 364–370.

    Article  CAS  Google Scholar 

  15. Goldemberg, J., Coelho, S. T., Nastari, P. M., & Lucon, O. (2004). Ethanol learning curve—the Brazilian experience. Biomass & Bioenergy, 26, 301–304.

    Article  Google Scholar 

  16. Costa, C. P., & Ferreira, M. C. (1991). Preservação de microrganismos. Review Brasil Microbiology, 22, 263–268.

    Google Scholar 

  17. Lee, S. S., Robinson, F. M., & Wang, H. Y. (1981). Rapid determination of yeast viability. Biotechnology and Bioengineering, 11, 641–649.

    Google Scholar 

  18. Balagurunathan, B., Jonnalagadda, S., Tan, L., & Srinivasan, R. (2012). Reconstruction and analysis of genome-scale metabolic model for Scheffersomyces stipitis. Microbial Cell Factories, 11, 27.

    Article  CAS  Google Scholar 

  19. Lisha, K. P., & Sarkar, D. (2013). Dynamic flux balance analysis of batch fermentation: effect of genetic manipulations on ethanol production. Bioprocess and Biosystems Engineering. doi:10.1007/s00449-013-1027-y.

    Google Scholar 

  20. Liang, M., He, Q. P., Jeffries, T. W. and Wang, J. (2013). Elucidating xylose metabolism of Scheffersomyces stipitis by integrating principal component analysis with flux balance analysis. American Control Conference (ACC), Washington, DC, USA, June 17–19.

  21. Garcia-Albornoz, M. A., & Nielsen, J. (2013). Application of genome-scale metabolic models in metabolic engineering. Industrial Biotechnology, 9(4), 203–214.

    Article  CAS  Google Scholar 

  22. Roberto, I. C., Lacis, L. S., Barbosa, M. F. S., & Mancilha, I. M. (1991). Utilization of sugar cane bagasse hemicellulosic hydrolysate by Pichia stipitis for the production of ethanol. Process Biochemistry, 26, 15–21.

    Article  CAS  Google Scholar 

  23. Barbosa, M. F. S., Medeiros, M. B., de Mancilha, Y. M., Schneider, H., & Lee, H. (1988). Screening of yeasts for production of xylitol from d-xylose and some factors which affect xylitol yield in Candida guilliermondii. Journal of Industrial Microbiology & Biotechnology, 3, 241–251.

    Article  CAS  Google Scholar 

  24. Amaral Collaço, M. T., Girio, F. M., & Peito, M. A. (1989). Utilization of the hemicelluloses fraction of agro-industrial residues by yeasts. In: Enzyme systems for lignocellulosic degradation. London: Elsevier, 221:230.

  25. Parajó, J. C., Dominguez, H., & Dominguez, J. M. (1996). Production of xylose from concentrated wood hydrolysates by Debaryomyces hansenii: effect of the initial cell concentration. Biotechnology Letters, 18, 593–598.

    Article  Google Scholar 

  26. Slininger, P. J., Bothast, R. J., Okos, M. R., & Ladisch, M. R. (1985). Comparative evaluation of ethanol production by xylose-fermenting yeasts presented high xylose concentrations. Biotechnology Letters, 6, 431–436.

    Article  Google Scholar 

  27. Linko, Y. Y., Kautola, S., Uotila, S., & Linko, P. (1986). Alcoholic fermentation of d-xylose by immobilized Pichia stipitis yeast. Biotechnology Letters, 8/1, 47–52.

    Article  Google Scholar 

  28. Calleja, G. B., Levy-Rick, S., Mahmourides, G., Labelle, J., & Schneider, H. (1984). Rapid process for the conversion of xylose to ethanol. Canadian Patent, 1, 245–266.

    Google Scholar 

  29. Dellweg, H., Rizzi, M., Methner, H., & Debus, D. (1984). Xylose fermentation by yeasts. Biotechnology Letters, 6, 395–400.

    Article  CAS  Google Scholar 

  30. Hinman, N. D., Wright, J. D., Hoagland, W., & Wyman, C. E. (1989). Xylose fermentation: an economic analysis. Applied Biochemistry and Biotechnology, 20/21, 391–401.

    Article  Google Scholar 

  31. Caspeta, L., Shoaie, S., Agren, R., Nookaew, I., & Nielsen, J. (2012). Genome-scale metabolic reconstructions of Pichia stipitis and Pichia pastoris and in silico evaluation of their potentials. BMC Systems Biology, 6, 24.

    Article  CAS  Google Scholar 

  32. Atala, D. I. P., Costa, A., Maciel, R., & Maugeri, F. (2001). Kinetics of ethanol fermentation with high biomass concentration considering the effect of temperature. Applied Biochemistry and Biotechnology, 91–93(1–9), 353–366.

    Article  Google Scholar 

  33. Andrade, R. R., Rivera, E. C., Costa, A., Atala, D. I. P., Maugeri, F., & Maciel, R. (2007). Estimation of temperature dependent parameters of a batch alcoholic fermentation process. Applied Biochemistry and Biotechnology, 136(140), 753–763.

    Article  Google Scholar 

  34. Rivera, E. C., Costa, A., Atala, D. I. P., Maugeri, F., Maciel, R. W., & Filho, R. M. (2006). Evaluation of optimization techniques for parameter estimation: application to ethanol fermentation considering the effect of temperature. Process Biochemistry, 41, 1682–1687.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Farias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farias, D., de Andrade, R.R. & Maugeri-Filho, F. Kinetic Modeling of Ethanol Production by Scheffersomyces stipitis from Xylose. Appl Biochem Biotechnol 172, 361–379 (2014). https://doi.org/10.1007/s12010-013-0546-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0546-y

Keywords

Navigation