Skip to main content

Advertisement

Log in

Optimization of Dilute Sulfuric Acid Pretreatment to Maximize Combined Sugar Yield from Sugarcane Bagasse for Ethanol Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Increasing fermentable sugar yields per gram of biomass depends strongly on optimal selection of varieties and optimization of pretreatment conditions. In this study, dilute acid pretreatment of bagasse from six varieties of sugarcane was investigated in connection with enzymatic hydrolysis for maximum combined sugar yield (CSY). The CSY from the varieties were also compared with the results from industrial bagasse. The results revealed considerable differences in CSY between the varieties. Up to 22.7 % differences in CSY at the optimal conditions was observed. The combined sugar yield difference between the best performing variety and the industrial bagasse was 34.1 %. High ratio of carbohydrates to lignin and low ash content favored the release of sugar from the substrates. At mild pretreatment conditions, the differences in bioconversion efficiency between varieties were greater than at severe condition. This observation suggests that under less severe conditions the glucose recovery was largely determined by chemical composition of biomass. The results from this study support the possibility of increasing sugar yields or improving the conversion efficiency when pretreatment optimization is performed on varieties with improved properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Somerville, C., Youngs, H., Taylor, C., Davis, S. C., & Long, S. P. (2010). Science, 329, 790–792.

    Article  CAS  Google Scholar 

  2. Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83, 1–11.

    Article  CAS  Google Scholar 

  3. Wyman, C. E. (2007). TRENDS in Biotechnology, 25, 153–157.

    Article  CAS  Google Scholar 

  4. Masarin, F., Gurpilhares, D. B., Baffa, D. C. F., Barbosa, M. H. P., Carvalho, W., Ferraz, A., & Milagres, A. M. F. (2011). Biotechnology for Biofuel, 4, 55–64.

    Article  CAS  Google Scholar 

  5. Jung, J. H., Fouad, W. M., Vermerris, W., Gallo, M., & Altpeter, F. (2012). Plant Biotechnology Journal, 10, 1067–1076.

    Article  CAS  Google Scholar 

  6. Benjamin, Y., Cheng, H., & Görgens, J. F. (2013). Industrial Crops Products. doi:10.1016/j.ind. crop.2013.08.067.

    Google Scholar 

  7. Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. (2010). Bioresource Technology, 101, 4851–4861.

    Article  CAS  Google Scholar 

  8. Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Industrial & Engineering Chemistry Research, 48, 3713–3729.

    Article  CAS  Google Scholar 

  9. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y., & Holtzapple, M. (2005). Bioresource Technology, 96, 673–686.

    Article  CAS  Google Scholar 

  10. Taherzadeh, M. J., & Karimi, K. (2007). Bioresource Technology, 2, 472–499.

    CAS  Google Scholar 

  11. Canilha, L., Santos, V. T. O., Rocha, G. J. M., Almeida de Silva, J. B., Giulietti, M., & Silva, S. S. (2011). Journal of Industrial Microbiology & Biotechnology, 38, 1467–1475.

    Article  CAS  Google Scholar 

  12. Mesa, L., González, E., Cara, C., Ruiz, E., Castro, E., & Mussatto, S. I. (2010). Journal of Chemical Technology and Biotechnology, 85, 1092–1098.

    Article  CAS  Google Scholar 

  13. Neureiter, M., Danner, H., Thomasser, C., Saidi, B., & Braun, R. (2002). Applied Biochemistry and Biotechnology, 98, 49–58.

    Article  Google Scholar 

  14. Um, B. H., & Bae, S. H. S. (2011). Korean Journal of Chemical Engineering, 28, 1172–1176.

    Article  CAS  Google Scholar 

  15. Zhao, X., Peng, F., Cheng, K., & Liu, D. (2009). Enzyme and Microbial Technology, 44, 17–23.

    Article  CAS  Google Scholar 

  16. Morjanoff, P. J., & Gray, P. P. (1987). Biotechnology and Bioengineering, 29, 733–741.

    Article  CAS  Google Scholar 

  17. Cai, B. Y., Ge, J. P., Ling, H. Z., Cheng, K. K., & Ping, W. X. (2012). Biomass and Bioenergy, 36, 250–257.

    Article  CAS  Google Scholar 

  18. Pérez, J. A., Ballesteros, I., Ballesteros, M., Sáez, F., Negro, M. J., & Manzanares, P. (2008). Fuel, 87, 3640–3647.

    Article  Google Scholar 

  19. Lloyd, T. A., & Wyman, C. E. (2005). Bioresource Technology, 96, 1967–1977.

    Article  CAS  Google Scholar 

  20. Bekker, J.P.I. (2007). PhD Thesis, University of Stellenbosch, Stellenbosch, South Africa.

  21. Yang, B., & Wyman, C.E. (2009). In: J. R. Mielenz (Ed.), (pp. 103–114). Totowa: Humana.

  22. García-Aparicio, M., Trollope, K., Tyhoda, L., Diedericks, D., & Görgens, J. (2011). Fuel, 90, 1638–1644.

    Article  Google Scholar 

  23. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008a). In: Laboratory analytical procedure (LAP), NREL/TP-510-42623. National Renewable Energy Laboratory, Golden, Colorado.

  24. Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008a). In: Laboratory analytical procedure (LAP), NREL/TP-510-42619, National Renewable Energy Laboratory, Golden, Colorado.

  25. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008b). In: Laboratory analytical procedure (LAP), NREL/TP-510-42618. National Renewable Energy Laboratory, Golden, Colorado.

  26. Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008b). In: Laboratory analytical procedure (LAP), NREL/TP-510-42622. National Renewable Energy Laboratory, Golden, Colorado.

  27. Redding, A. P., Wang, Z., Keshwani, D. R., & Cheng, J. J. (2011). Bioresource Technology, 102, 1415–1424.

    Article  CAS  Google Scholar 

  28. Ramos, L. P. (2003). Quimica Nova, 26, 863–871.

    Article  CAS  Google Scholar 

  29. Jacobsen, S., & Wyman, C. (2000). Applied Biochemistry and Biotechnology, 84–86, 81–96.

    Article  Google Scholar 

  30. Weiss, N. D., Farmer, J. D., & Schell, D. J. (2010). Bioresource Technology, 101, 674–678.

    Article  CAS  Google Scholar 

  31. Dien, B. S., Jung, H.-J. G., Vogel, K. P., Casler, M. D., Lamb, J. F. S., Iten, L., Mitchell, R. B., & Sarath, G. (2006). Biomass and Bioenergy, 30, 880–891.

    Article  CAS  Google Scholar 

  32. Dien, B., Sarath, G., Pedersen, J., Sattler, S., Chen, H., Funnell-Harris, D., Nichols, N., & Cotta, M. (2009). Bioenergy Research, 2, 153–164.

    Article  Google Scholar 

  33. Diedericks, D. (2013). PhD Thesis, University of Stellenbosch, Stellenbosch, South Africa.

  34. Torres, A. F., van der Weijde, T., Dolstra, O., Visser, R. G. F., & Trindade, L. M. (2013). Bioenergy Research, 6, 1038–1051.

    Article  CAS  Google Scholar 

  35. Lynd, L. R., Laser, M. S., Bransby, D., Dale, B. E., Davison, B., Hamilton, R., Himmel, M., Keller, M., McMillan, J. D., & Sheehan, J. (2008). Nature Biotechnology, 26, 169–172.

    Article  CAS  Google Scholar 

  36. Wyman, C. E., Balan, V., Dale, B. E., Elander, R. T., Falls, M., Hames, B., Holtzapple, M. T., Ladisch, M. R., Lee, Y. Y., Mosier, N., Pallapolu, V. R., Shi, J., Thomas, S. R., & Warner, R. E. (2011). Bioresource Technology, 102, 11052–11062.

    Article  CAS  Google Scholar 

  37. Lewis, M. F., Lorenzana, R. E., Jung, H.-J. G., & Bernardo, R. (2010). Crop Science, 50, 516–523.

    Article  CAS  Google Scholar 

  38. Lindedam, J., Andersen, S. B., DeMartini, J., Bruun, S., Jørgensen, H., Felby, C., Magid, J., Yang, B., & Wyman, C. E. (2012). Biomass and Bioenergy, 37, 221–228.

    Article  CAS  Google Scholar 

  39. Larsen, S. U., Bruun, S., & Lindedam, J. (2012). Biomass and Bioenergy, 45, 239–250.

    Article  CAS  Google Scholar 

  40. Olsen, C., Arantes, V., & Saddler, J. (2012). Biofuels, Bioproducts and Biorefining, 6, 534–548.

    Article  CAS  Google Scholar 

  41. Panagiotopoulos, I. A., Bakker, R. R., Vrije, T. D., & Koukios, E. G. (2011). Bioresource Technology, 102, 11204–11211.

    Article  CAS  Google Scholar 

  42. Guo, G.-L., Chen, W.-H., Chen, W.-H., Men, L.-C., & Hwang, W.-S. (2008). Bioresource Technology, 99, 6046–6053.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the South Africa Sugarcane Research Institute for providing sugarcane bagasse and for their financial support. We would like to extend our sincere gratitude to the Technology and Human Research for Industry Program for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Görgens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benjamin, Y., Cheng, H. & Görgens, J.F. Optimization of Dilute Sulfuric Acid Pretreatment to Maximize Combined Sugar Yield from Sugarcane Bagasse for Ethanol Production. Appl Biochem Biotechnol 172, 610–630 (2014). https://doi.org/10.1007/s12010-013-0545-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0545-z

Keywords

Navigation