Skip to main content

Advertisement

Log in

Identification of Site-Specific Degradation in Bacterially Expressed Human Fibroblast Growth Factor 4 and Generation of an Aminoterminally Truncated, Stable Form

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Fibroblast growth factor 4 (FGF4) is considered as a crucial gene for tumorigenesis in humans and the development of mammalian embryos. The secreted, mature form of human FGF4 is thought to be comprised of 175 amino acid residues (proline32 to leucine206, Pro32-Leu206). Here, we found that bacterially expressed, 6× histidine (His)-tagged human FGF4 (Pro32-Leu206) protein, referred to as HishFGF4, was unstable such as in phosphate-buffered saline. In these conditions, site-specific cleavage, including between Ser54 and Leu55, in HishFGF4 was identified. In order to generate stable human FGF4 derivatives, a 6× His-tagged human FGF4 (Leu55-Leu206), termed HishFGF4L, was expressed in Escherichia coli. HishFGF4L could be purified from the supernatant of cell lysates by heparin column chromatography. In phosphate-buffered saline, HishFGF4L was considered as sufficiently stable. HishFGF4L exerted significant mitogenic activities in mouse embryonic fibroblast Balb/c 3T3 cells. In the presence of PD173074, an FGF receptor inhibitor, the growth-stimulating activity of HishFGF4L disappeared. Taken together, we suggest that HishFGF4L is capable of promoting cell growth via an authentic FGF signaling pathway. Our study provides a simple method for the production of a bioactive human FGF4 derivative in E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Itoh, N., & Ornitz, D. M. (2011). Journal of Biochemistry, 149(2), 121–130.

    Article  CAS  Google Scholar 

  2. Sakamoto, H., Mori, M., Taira, M., et al. (1986). Proceedings of the National Academy of Sciences of the United States of America, 83(11), 3997–4001.

    Article  CAS  Google Scholar 

  3. Niswander, L., & Martin, G. R. (1992). Development, 114(3), 755–768.

    CAS  Google Scholar 

  4. Rappolee, D. A., Basilico, C., Patel, Y., et al. (1994). Development, 120(8), 2259–2269.

    CAS  Google Scholar 

  5. Feldman, B., Poueymirou, W., Papaioannou, V. E., et al. (1995). Science, 267(5195), 246–249.

    Article  CAS  Google Scholar 

  6. Arman, E., Haffner-Krausz, R., Chen, Y., et al. (1998). Proceedings of the National Academy of Sciences of the United States of America, 95(9), 5082–5087.

    Article  CAS  Google Scholar 

  7. Tanaka, S., Kunath, T., Hadjantonakis, A., et al. (1998). Science, 282, 2072–2075.

    Article  CAS  Google Scholar 

  8. Delli-Bovi, P., Curatola, A. M., Newman, K. M., et al. (1988). Molecular and Cellular Biology, 8(7), 2933–2941.

    CAS  Google Scholar 

  9. Kuroda, S., Kasugai, S., Oida, S., et al. (1999). Bone, 25(4), 431–437.

    Article  CAS  Google Scholar 

  10. Hosoi, Y., Ando, Y., Arakawa, M., et al. (2011). Journal of Reproduction and Development, 57(5), 650–654.

    Article  CAS  Google Scholar 

  11. Sugawara, S., Ito, T., Suzuki, H., et al. (2013). Bioscience, Biotechnology, and Biochemistry, 77(1), 173–177.

    Article  CAS  Google Scholar 

  12. Sugawara, S., Ito, T., Sato, S., et al. (2013). Animal Science Journal, 84(3), 275–280.

    Article  CAS  Google Scholar 

  13. Saito, K., Ogawa, A., Toyofuku, K., et al. (2011). Reproduction, 141(2), 259–268.

    Article  CAS  Google Scholar 

  14. Iha, M., Watanabe, M., Kihara, Y., et al. (2012). Reproduction, 143, 477–489.

    Article  CAS  Google Scholar 

  15. Bellosta, P., Talarico, D., Rogers, D., et al. (1993). Journal of Cell Biology, 121(3), 705–713.

    Article  CAS  Google Scholar 

  16. Fuller-Pace, F., Peters, G., & Dickson, C. (1991). Journal of Cell Biology, 115(2), 547–555.

    Article  CAS  Google Scholar 

  17. Miyagawa, K., Kimura, S., Yoshida, T., et al. (1991). Biochemical and Biophysical Research Communications, 174(1), 404–410.

    Article  CAS  Google Scholar 

  18. Skaper, S. D., Kee, W. J., Facci, L., et al. (2000). Journal of Neurochemistry, 75(4), 1520–1527.

    Article  CAS  Google Scholar 

  19. Pardo, O. E., Latigo, J., Jeffery, R. E., et al. (2009). Cancer Research, 69(22), 8645–8651.

    Article  CAS  Google Scholar 

  20. Yang, Q. E., Fields, S. D., Zhang, K., et al. (2011). Biology of Reproduction, 85(5), 946–953.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS KAKENHI No. 24580413) and the Akita Prefectural University President’s Research Project (H24Kendai-chi No. 44 and H25Kendai-chi No. 79) to M. K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Kobayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugawara, S., Ito, T., Sato, S. et al. Identification of Site-Specific Degradation in Bacterially Expressed Human Fibroblast Growth Factor 4 and Generation of an Aminoterminally Truncated, Stable Form. Appl Biochem Biotechnol 172, 206–215 (2014). https://doi.org/10.1007/s12010-013-0544-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0544-0

Keywords

Navigation