Skip to main content
Log in

Water Miscible Mono Alcohols’ Effect on the Proteolytic Performance of Bacillus clausii Serine Alkaline Protease

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, our investigations showed that the increasing concentrations of all examined mono alcohols caused a decrease in the V m, k cat and k cat/K m values of Bacillus clausii GMBE 42 serine alkaline protease for casein hydrolysis. However, the K m value of the enzyme remained almost the same, which was an indicator of non-competitive inhibition. Whereas inhibition by methanol was partial non-competitive, inhibition by the rest of the alcohols tested was simple non-competitive. The inhibition constants (K I) were in the range of 1.32–3.10 M, and the order of the inhibitory effect was 1-propanol>2-propanol>methanol>ethanol. The ΔG and ΔG E − T values of the enzyme increased at increasing concentrations of all alcohols examined, but the ΔG ES value of the enzyme remained almost the same. The constant K m and ΔG ES values in the presence and absence of mono alcohols indicated the existence of different binding sites for mono alcohols and casein on enzyme the molecule. The k cat of the enzyme decreased linearly by increasing log P and decreasing dielectric constant (D) values, but the ΔG and ΔG E − T values of the enzyme increased by increasing log P and decreasing D values of the reaction medium containing mono alcohols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Log P :

Solvent hydrophobicity

x water :

Mol fraction of water

D :

Dielectric constant

T [K]:

Absolute temperature

C [%]:

Mono alcohol concentration

a, b, m, n :

Empirical constants

[S] [M]:

Substrate (casein) concentration

v [U min−1]:

Initial reaction rate of casein hydrolysis

V max [μmol ml−1 min−1]:

Maximum casein hydrolysis rate of enzyme

K m [M]:

Michaelis–Menten constant

k cat [min−1]:

Catalytic rate constant (turnover number) of enzyme

k cat/K m [min−1 M−1]:

Catalytic performance of enzyme

[I] [M]:

Inhibitor (mono alcohol) concentration

K I [M]:

Inhibitor (mono alcohol) concentration

α, β :

Fold changes in K m and V m, respectively

ΔG [kJ mol−1]:

Activation free energy of enzyme for casein hydrolysis

ΔG ES [kJ mol−1]:

Free energy of substrate binding

ΔG E − T [kJ mol−1]:

Free energy of transition state formation

R [J K−1 min−1]:

Gas constant (8.314)

h [J s]:

Plank constant (6.63 × 10−34)

k B [J K−1]:

Boltzmann constant (1.38 × 10−23)

References

  1. Gupta, R., Beg, Q. K., & Lorenz, P. (2002). Applied Microbiology and Biotechnology, 59, 15–32.

    Article  CAS  Google Scholar 

  2. Carrea, G., & Riva, S. (2000). Angewandte Chemie International Edition, 39, 2226–2254.

    Article  CAS  Google Scholar 

  3. DeSantis, G., & Davis, B. G. (2006). Current Opinion in Chemical Biology, 10, 139–140.

    Article  CAS  Google Scholar 

  4. Bacheva, A. V., Filippova, I. Y., Lysogorskaya, E. N., & Oksenoit, E. S. (2000). Journal of Molecular Catalysis B: Enzymatic, 11, 89–96.

    Article  CAS  Google Scholar 

  5. Bacheva, A. V., Baibak, O. V., Belyaeva, A. V., Oksenoit, E. S., Velichko, T. I., Lyso-gorskaya, E. N., et al. (2003). Biochemistry (Moscow), 68, 1261–1266.

    Article  CAS  Google Scholar 

  6. Sears, P., Witte, K., & Wong, C. H. (1999). Journal of Molecular Catalysis B: Enzymatic, 6, 297–304.

    Article  CAS  Google Scholar 

  7. Dordick, J. S. (1989). Enzyme and Microbial Technology, 11, 194–211.

    Article  CAS  Google Scholar 

  8. Klibanov, A. M. (1997). TIBTECH, 15, 97–101.

    Article  CAS  Google Scholar 

  9. Brinks, L. E. S., & Tramper, J. (1985). Biotechnology and Bioengineering, 27, 1258–1269.

    Article  Google Scholar 

  10. Kise, H., Hayakawa, A., & Noritomi, H. (1990). Journal of Biotechnology, 14, 239–254.

    Article  CAS  Google Scholar 

  11. Griebenow, K., & Klibanov, A. M. (1996). Journal of the American Chemical Society, 118, 11695–11700.

    Article  CAS  Google Scholar 

  12. Reslow, M., Adlercreutz, P., & Mattasson, B. (1987). Applied Microbiology and Biotechnology, 26, 1–8.

    Article  CAS  Google Scholar 

  13. Klibanov, A. M. (2001). Nature, 409, 241–246.

    Article  CAS  Google Scholar 

  14. Bordusa, F. (2002). Chemical Reviews, 102, 4817–4867.

    Article  CAS  Google Scholar 

  15. Laane, C., Vos, S. B. K., & Veeger, C. (1987). Biotechnology and Bioengineering, 30, 81–87.

    Article  CAS  Google Scholar 

  16. Cowan, D. A. (1997). Comparative Biochemistry and Physiology, 118A, 429–438.

    Article  CAS  Google Scholar 

  17. Warshel, A. (2000). Theoretical Chemistry Accounts, 103, 337–339.

    Article  CAS  Google Scholar 

  18. Park, H., & Chi, Y. M. (2001). Biochimica et Biophysica Acta, 1568, 53–59.

    Article  CAS  Google Scholar 

  19. Denizci, A. A., Kazan, D., Abeln, E. C. A., & Erarslan, A. (2004). Journal of Applied Microbiology, 96, 320–327.

    Article  CAS  Google Scholar 

  20. Kazan, D., Denizci, A. A., Öner, M. N. K., & Erarslan, A. (2005). Journal of Industrial Microbiology & Biotechnology, 32, 335–344.

    Article  CAS  Google Scholar 

  21. Kazan, D., Bal, H., Denizci, A. A., Öztürk, N. C., Öztürk, H. U., Dilgimen, A. S., et al. (2009). Preparative Biochemistry & Biotechnology, 39, 289–307.

    Article  CAS  Google Scholar 

  22. Öztürk, D. C., Kazan, D., Denizci, A. A., Grimoldi, D., Secundo, F., & Erarslan, A. (2010). Journal of Molecular Catalysis B: Enzymatic, 64, 184–188.

    Article  Google Scholar 

  23. Takami, T., Abika, T., & Horikoshi, K. (1989). Applied Microbiology and Biotechnology, 30, 120–124.

    Article  CAS  Google Scholar 

  24. Sedmak, J. J., & Grosberg, S. E. (1977). Analytical Biochemistry, 79, 544–552.

    Article  CAS  Google Scholar 

  25. Spector, T. (1978). Analytical Biochemistry, 86, 142–146.

    Article  CAS  Google Scholar 

  26. Arroyo, M., Guzman, R. T., Mata, I., Castillon, M. P., & Asebal, C. (2000). Enzyme and Microbial Technology, 27, 122–126.

    Article  CAS  Google Scholar 

  27. Åkerlöf, G. (1932). Journal of the American Chemical Society, 54, 4125–4139.

    Article  Google Scholar 

  28. Segel, I. H. (1975). Enzyme kinetics. John Wiley & Sons, pp. 100–192.

  29. Eyring, H., & Stearn, A. E. (1939). Chemical Reviews, 24, 253–270.

    Article  CAS  Google Scholar 

  30. Mozhaev, V. V., Khmelnitsky, Y. L., Sergeeva, M. V., Belova, A. B., Klyachko, N. L., Levashov, A. V., et al. (1989). European Journal of Biochemistry, 184, 597–602.

    Article  CAS  Google Scholar 

  31. Khmelnitsky, Y. L., Mozhaev, V. V., Belova, A. B., Sergeeva, M. V., & Martinek, K. (1991). European Journal of Biochemistry, 198, 31–41.

    Article  CAS  Google Scholar 

  32. Muta, Y., & Inouye, K. (2002). Journal of Biochemistry, 132, 945–951.

    Article  CAS  Google Scholar 

  33. Alam, M. N., Tadasa, K., Maeda, T., & Hiroshi, K. (1997). Biotechnological Letters, 19, 563–568.

    Article  CAS  Google Scholar 

  34. Pazhang, M., Khajeh, K., Ranjbar, B., & Hosseinkhani, S. (2006). Journal of Biotechnology, 127, 45–53.

    Article  CAS  Google Scholar 

  35. Maurel, P. (1978). Journal of Biological Chemistry, 253, 1677–1683.

    CAS  Google Scholar 

  36. Inouye, K., Lee, S., Nambu, K., & Tonomura, B. (1997). Journal of Biochemistry, 122, 358–364.

    Article  CAS  Google Scholar 

  37. Arroyo, M., Torres, R., Mata, I., Castillón, M. P., & Acebal, C. (1999). Enzyme and Microbial Technology, 25, 378–383.

    Article  CAS  Google Scholar 

  38. Akolkar, A. A., & Desai, A. J. (2010). Research in Microbiology, 161, 355–362.

    Article  CAS  Google Scholar 

  39. Fersht, A. (1999). Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding. W.H. Freeman and Company, pp. 350–356.

Download references

Acknowledgments

This research was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) by the Project No: TUBITAK TBAG-U/123 104T262.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Altan Erarslan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duman, Y.(., Kazan, D., Denizci, A.A. et al. Water Miscible Mono Alcohols’ Effect on the Proteolytic Performance of Bacillus clausii Serine Alkaline Protease. Appl Biochem Biotechnol 172, 469–486 (2014). https://doi.org/10.1007/s12010-013-0525-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0525-3

Keywords

Navigation