Skip to main content
Log in

Highly Efficient Method Towards In Situ Immobilization of Invertase Using Cryogelation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A novel method was developed for the immobilization of Saccharomyces cerevisiae invertase within supermacroporous polyacrylamide cryogel and was used to produce invert sugar. First, the cross-linking of invertase with soluble polyglutaraldehyde (PGA) was carried out prior to immobilization in order to increase the bulkiness of invertase and thus preventing the leakage of the cross-linked enzyme after immobilization by entrapment. And then, in situ immobilization of PGA cross-linked invertase within cryogel synthesis was achieved by free radical polymerization in semi-frozen state. The method resulted in 100 % immobilization and 74 % activity yields. The immobilized invertase retained all the initial activity for 30 days and 30 batch reactions. Immobilization had no effect on optimum temperature and it was 60 °C for both free and immobilized enzyme. However, optimum pH was affected upon immobilization. Optimum pH values for free and immobilized enzyme were 4.5 and 5.0, respectively. The immobilized enzyme was more stable than the free enzyme at high pH and temperatures. The kinetic parameters for free and immobilized invertase were also determined. The newly developed method is simple yet effective and could be used for the immobilization of some other enzymes and microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez- Lafuente, R. (2007). Enzyme and Microbial Technology, 40, 1451–1463.

    Article  CAS  Google Scholar 

  2. Yang, G., Wu, J., Xu, G., & Yang, L. (2009). Bioresource Technology, 100, 4311–4316.

    Article  CAS  Google Scholar 

  3. Petrov, P., Pavlova, S., Tsvetanov, C. B., Topalova, Y., & Dimkov, R. (2011). Journal of Applied Polymer Science, 122, 1742–1748.

    Article  CAS  Google Scholar 

  4. Lozinsky, V. I. (2002). Russian Chemical Reviews, 71, 489–511.

    Article  CAS  Google Scholar 

  5. Lozinsky, V. I., Galaev, I. Y., Plieva, F. M., Savina, I. N., Jungvid, H., & Mattiasson, B. (2003). Trends in Biotechnology, 21, 445–451.

    Article  CAS  Google Scholar 

  6. Ozmen, M. M., & Okay, O. (2005). Polymer, 46, 8119.

    Article  CAS  Google Scholar 

  7. Dinu, M. V., Ozmen, M. M., Dragan, E. S., & Okay, O. (2007). Polymer, 48, 195–204.

    Article  CAS  Google Scholar 

  8. Plieva, F. M., Kochetkov, K. A., Singh, I., Parmar, V. S., Belokon, Y. N., & Lozinsky, V. I. (2000). Biotechnology Letters, 22, 551–554.

    Article  CAS  Google Scholar 

  9. Busto, M. D., Meza, V., Ortega, N., & Perez-Mateos, M. (2007). Food Chemistry, 104, 1177–1182.

    Article  CAS  Google Scholar 

  10. Hedström, M., Plieva, F., Galaev, I., & Mattiasson, B. (2008). Analytical and Bioanalytical Chemistry, 390, 907–912.

    Article  Google Scholar 

  11. Tripathi, A., Sami, H., Jain, S. R., Viloria-Cols, M., Zhuravleva, N., Nilsson, G., Jungvid, H., & Kumar, A. (2010). Enzyme and Microbial Technology, 47, 44–51.

    Article  CAS  Google Scholar 

  12. Tüzmen, N., Kalburcu, T., & Denizli, A. (2012). Process Biochemistry, 47, 26–33.

    Article  Google Scholar 

  13. Uygun, M., Uygun, D. A., Özçalışkan, E., Akgöl, S., & Denizli, A. (2012). Journal of Chromatography B, 887–888, 73–78.

    Article  Google Scholar 

  14. Linko, Y. Y., Weckstrcm, L., & Linko, P. (1980). Food Process Engineering, 2, 81.

    Article  CAS  Google Scholar 

  15. Prodanovıc, R. (2003). Journal of the Serbian Chemical Society, 68, 819–824.

    Article  Google Scholar 

  16. Tanriseven, A., & Doğan, Ş. (2001). Process Biochemistry, 36, 1081–1083.

    Article  CAS  Google Scholar 

  17. Cirpan, A., Alkan, S., Toppare, L., Hepuzer, Y., & Yagci, Y. (2003). Bioelectrochemistry, 59, 29–33.

    Article  CAS  Google Scholar 

  18. Cadena, P. G., Jeronimo, R. A. S., Melo, J. M., Silva, R. A., Lima Filho, J. L., & Pimentel, M. C. B. (2010). Bioresource Technology, 101, 1595–1602.

    Article  CAS  Google Scholar 

  19. Vujčić, Z., Miloradović, Z., Milovanović, A., & Božić, N. (2011). Food Chemistry, 126, 236–240.

    Article  Google Scholar 

  20. Uzun, K., Çevik, E., Şenel, M., Sözeri, H., Baykal, A., Abasıyanık, M. F., & Toprak, M. S. (2010). Journal of Nanoparticle Research, 12, 3057–3067.

    Article  CAS  Google Scholar 

  21. Sari, M. (2011). Applied Biochemistry and Biotechnology, 163, 1020–1037.

    Article  CAS  Google Scholar 

  22. Aydar, S., Böyükbayram, A. E., Şendur, M., & Toppare, L. (2011). Journal of Macromolecular Science, Part A, 48, 855–861.

    Article  CAS  Google Scholar 

  23. Rashad, M. M. N., Mohamed, U., & Abdou, H. M. (2011). Advances in Food Sciences, 33, 79–89.

    CAS  Google Scholar 

  24. Migneault, I., Dartiguenave, C., Bertrand, M. J., & Waldron, K. C. (2004). Biotechniques, 37, 790–802.

    CAS  Google Scholar 

  25. Tanriseven, A., & Ölçer, Z. (2008). Biochemical Engineering Journal, 39, 430–434.

    Article  CAS  Google Scholar 

  26. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  27. Efremenko, E. N., Lozinsky, V. I., Sergeeva, V. S., Plieva, F. M., Makhlis, T. A., Kazankov, G. M., Gladilin, A. K., & Varfolomeyev, S. D. (2002). Journal of Biochemical and Biophysical Methods, 51, 195–201.

    Article  CAS  Google Scholar 

  28. Sulabha, K. A., & Prabhune. (2012). Research Journal of Biotechnology, 7, 81.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Gebze Institute of Technology Research Foundation for financial support (Project No: 2012-A-10).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Faruk Yilmaz or Aziz Tanriseven.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olcer, Z., Ozmen, M.M., Sahin, Z.M. et al. Highly Efficient Method Towards In Situ Immobilization of Invertase Using Cryogelation. Appl Biochem Biotechnol 171, 2142–2152 (2013). https://doi.org/10.1007/s12010-013-0507-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0507-5

Keywords

Navigation