Skip to main content
Log in

Biodesulfurization of Model Compounds and De-asphalted Bunker Oil by Mixed Culture

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, complicated model sulfur compounds in bunker oil and de-asphalted bunker oil were biodesulfurized in a batch process by microbial consortium enriched from oil sludge. Dibenzothiophene (DBT) and benzo[b]naphtho[1,2-d]thiophene (BNT1) were selected as model sulfur compounds. The results show that the mixed culture was able to grow by utilizing DBT and BNT1 as the sole sulfur source, while the cell density was higher using DBT than BNT1 as the sulfur source. GC-MS analysis of their desulfurized metabolites indicates that both DBT and BNT1 could be desulfurized through the sulfur-specific degradation pathway with the selective cleavage of carbon–sulfur bonds. When DBT and BNT1 coexisted, the biodesulfurization efficiency of BNT1 decreased significantly as the DBT concentrations increased (>0.1 mmol/L). BNT1 desulfurization efficiency also decreased along with the increase of 2-hydroxybiphenyl as the end product of DBT desulfurization. For real bunker oil, only 2.8 % of sulfur was removed without de-asphalting after 7 days of biotreatment. After de-asphalting, the biodesulfurization efficiency was significantly improved (26.2–36.5 %), which is mainly attributed to fully mixing of the oil and water due to the decreased viscosity of bunker oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bartle, K. D., Jones, J. M., Lea-Langton, A. R., Pourkashanian, M., Ross, A. B., Thillaimuthu, J. S., et al. (2013). The combustion of droplets of high-asphaltene heavy oils. Fuel, 103, 835–842.

    Article  CAS  Google Scholar 

  2. Smith, S. J., Pitcher, H., & Wigley, T. M. L. (2001). Global and regional anthropogenic sulfur dioxide emissions. Global and Planetary Change, 29, 99–119.

    Article  Google Scholar 

  3. Righi, M., Klinger, C., Eyring, V., Hendricks, J., Lauer, A., & Petzold, A. (2011). Climate impact of biofuels in shipping: global model studies of the aerosol indirect effect. Environmental Science & Technology, 45, 3519–3525.

    Article  CAS  Google Scholar 

  4. del Olmo, C. H., Alcon, A., Santos, V. E., & Garcia-Ochoa, F. (2005). Modeling the production of a Rhodococcus erythropolis IGTS8 biocatalyst for DBT biodesulfurization: influence of media composition. Enzyme and Microbial Technology, 37, 157–166.

    Article  Google Scholar 

  5. Gallagher, J. R., Olson, E. S., & Stanley, D. C. (1993). Microbial desulphurisation of dibenzothiophene—a sulfur-specific pathway. FEMS Microbiology Letters, 107, 31–36.

    Article  CAS  Google Scholar 

  6. Li, W., Tang, H., Liu, Q., Xing, J., Li, Q., Wang, D., et al. (2009). Deep desulfurization of diesel by integrating adsorption and microbial method. Biochemical Engineering Journal, 44, 297–301.

    Article  CAS  Google Scholar 

  7. Labana, S., Pandey, G., & Jain, R. K. (2005). Desulphurization of dibenzothiophene and diesel oils by bacteria. Letters in Applied Microbiology, 40, 159–163.

    Article  CAS  Google Scholar 

  8. Chen, H., Zhang, W., Chen, J., Cai, Y., & Li, W. (2008). Desulfurization of various organic sulfur compounds and the mixture of DBT + 4,6-DMDBT by Mycobacterium sp. ZD-19. Bioresource Technology, 99, 3630–3634.

    Article  CAS  Google Scholar 

  9. Li, F., Zhang, Z., Feng, J., Cai, X., & Xu, P. (2007). Biodesulfurization of DBT in tetradecane and crude oil by a facultative thermophilic bacterium Mycobacterium goodii X7B. Journal of Biotechnology, 127, 222–228.

    Article  CAS  Google Scholar 

  10. Choudhary, T. V. (2007). Structure-reactivity-mechanistic considerations in heavy oil desulfurization. Industrial & Engineering Chemistry Research, 46, 8363–8370.

    Article  CAS  Google Scholar 

  11. Choudhary, T. V., Malandra, J., Green, J., Parrott, S., & Johnson, B. (2006). Towards clean fuels: molecular-level sulfur reactivity in heavy oils. Angewandte Chemie International Edition, 45, 3299–3303.

    Article  CAS  Google Scholar 

  12. Rana, M. S., Samano, V., Ancheyta, J., & Diaz, J. A. I. (2007). A review of recent advances on process technologies for upgrading of heavy oils and residua. Fuel, 86, 1216–1231.

    Article  CAS  Google Scholar 

  13. Li, W., & Jiang, X. (2013). Enhancement of bunker oil biodesulfurization by adding surfactant. World Journal of Microbiology and Biotechnology, 29, 103–108.

    Article  CAS  Google Scholar 

  14. Watanabe, K., Noda, K., & Maruhashi, K. (2003). Selective cleavage of 10-methyl benzo[b]naphtho[2,1-d] thiophene by recombinant Mycobacterium sp. strain. Biotechnology Letters, 25, 797–803.

    Article  CAS  Google Scholar 

  15. Kobayashi, M., Horiuchi, K., Yoshikawa, O., Hirasawa, K., Ishii, Y., Fujino, K., et al. (2001). Kinetic analysis of microbial desulfurization of model and light gas oils containing multiple alkyl dibenzothiophenes. Bioscience, Biotechnology, and Biochemistry, 65, 298–304.

    Article  CAS  Google Scholar 

  16. Monticello, D. J. (2000). Biodesulfurization and the upgrading of petroleum distillates. Current Opinion Biotechnology, 11, 540–546.

    Article  CAS  Google Scholar 

  17. Denome, S. A., Oldfield, C., Nash, L. J., & Young, K. D. (1994). Characterization of the desulfurization genes from Rhodococcus sp strain IGTS8. Journal of Bacteriology, 176, 6707–6716.

    CAS  Google Scholar 

  18. Okada, H., Nomura, N., Nakahara, T., & Maruhashi, K. (2002). Analysis of dibenzothiophene metabolic pathway in Mycobacterium strain G3. Journal of Bioscience and Bioengineering, 93, 491–497.

    CAS  Google Scholar 

  19. Grossman, M. J., Lee, M. K., Prince, R. C., Garrett, K. K., George, G. N., & Pickering, I. J. (1999). Microbial desulfurization of a crude oil middle-distillate fraction: analysis of the extent of sulfur removal and the effect of removal on remaining sulfur. Applied and Environmental Microbiology, 65, 181–188.

    CAS  Google Scholar 

  20. Alves, L., Salgueiro, R., Rodrigues, C., Mesquita, E., Matos, J., & Girio, F. M. (2005). Desulfurization of dibenzothiophene, benzothiophene, and other thiophene analogs by a newly isolated bacterium, Gordonia alkanivorans strain 1B. Applied Biochemistry and Biotechnology, 120, 199–208.

    Article  CAS  Google Scholar 

  21. Nekodzuka, S., NakajimaKambe, T., Nomura, N., Lu, J., & Nakahara, T. (1997). Specific desulfurization of dibenzothiophene by Mycobacterium sp. strain G3. Biocatalysis and Biotransformation, 15, 17–27.

    Article  CAS  Google Scholar 

  22. Chen, H., Zhang, W.-J., Cai, Y.-B., Zhang, Y., & Li, W. (2008). Elucidation of 2-hydroxybiphenyl effect on dibenzothiophene desulfurization by Microbacterium sp. strain ZD-M2. Bioresource Technology, 99, 6928–6933.

    Article  CAS  Google Scholar 

  23. Curtis, C. W., Tsai, K., & Guin, J. A. (1987). Effects of solvent composition on coprocessing coal with petroleum residua. Fuel Processing Technology, 16, 71–87.

    Article  CAS  Google Scholar 

  24. Adewusi, V. A., Ademodi, B., & Oshinowo, T. (1991). Relative efficiency of phenol-water-ether mixture and nitrobenzene system for deasphalting "low-asphaltic" crude oil residue. Fuel Processing Technology, 27, 21–34.

    Article  CAS  Google Scholar 

  25. Luo, P., Wang, X., & Gu, Y. (2010). Characterization of asphaltenes precipitated with three light alkanes under different experimental conditions. Fluid Phase Equilibria, 291, 103–110.

    Article  CAS  Google Scholar 

  26. Samano, V., Guerrero, F., Ancheyta, J., Trejo, F., & Diaz, J. A. I. (2010). A batch reactor study of the effect of deasphalting on hydrotreating of heavy oil. Catalysis Today, 150, 264–271.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wangling Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, X., Yang, S. & Li, W. Biodesulfurization of Model Compounds and De-asphalted Bunker Oil by Mixed Culture. Appl Biochem Biotechnol 172, 62–72 (2014). https://doi.org/10.1007/s12010-013-0494-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0494-6

Keywords

Navigation